Unrestricted factor analysis of multidimensional test items based on an objectively refined target matrix

  • Urbano Lorenzo-SevaEmail author
  • Pere J. Ferrando


A common difficulty in the factor analysis of items designed to measure psychological constructs is that the factor structures obtained using exploratory factor analysis tend to be rejected if they are tested statistically with a confirmatory factor model. An alternative to confirmatory factor analysis is unrestricted factor analysis based on Procrustes rotation, which minimizes the distance from a target matrix proposed by the researcher. In the present article, we focus on the situation in which researchers propose a partially specified target matrix but are prepared to allow their initial target to be refined. Here we discuss RETAM as a new procedure for objectively refining target matrices. To date, it has been recommended that this kind of refinement be guided by human judgment. However, our approach is objective, because the threshold value is computed automatically (not decided on by the researcher) and there is no need to manually compute a number of factor rotations every time. The new procedure was tested in an extensive simulation study, and the results suggest that it may be a useful procedure in factor analysis applications based on incomplete measurement theory. Its feasibility in practice is illustrated with an empirical example from the personality domain. Finally, RETAM is implemented in a well-known noncommercial program for performing unrestricted factor analysis.


Partially specified target matrices Orthogonal and oblique Procrustes rotations Unrestricted factor analysis Exploratory factor analysis Confirmatory factor analysis Multidimensional test items 


Author note

This project was made possible by support of the Ministerio de Economía, Industria y Competitividad, the Agencia Estatal de Investigación, and the European Regional Development Fund (Grant No. PSI2017-82307-P).


  1. Abad, F. J., Garcia-Garzon, E., Garrido, L. E., & Barrada, J. R. (2017). Iteration of partially specified target matrices: Application to the bi-factor case. Multivariate Behavioral Research, 52, 416–429. CrossRefPubMedGoogle Scholar
  2. Asparouhov, T., & Muthén, B. O. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438. CrossRefGoogle Scholar
  3. Ayr, L. K., Yeates, K. O., Taylor, H. G., & Browne, M. (2009). Dimensions of postconcussive symptoms in children with mild traumatic brain injuries. Journal of the International Neuropsychological Society, 15, 19–30. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Browne, M. W. (1972a). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207–212. CrossRefGoogle Scholar
  5. Browne, M. W. (1972b). Orthogonal rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 115–120. CrossRefGoogle Scholar
  6. Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111–150. CrossRefGoogle Scholar
  7. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230–258. CrossRefGoogle Scholar
  8. Cliff, N. (1966). Orthogonal rotation to congruence. Psychometrika, 31, 33–42. CrossRefGoogle Scholar
  9. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Cureton, E. E., & Mulaik, S. A. (1975). The weighted varimax rotation and the promax rotation. Psychometrika, 40, 183–195. CrossRefGoogle Scholar
  11. Ferrando, P. J., & Lorenzo Seva, U. (2000). Unrestricted versus restricted factor analysis of multidimensional test items: Some aspects of the problem and some suggestions. Psicológica, 21, 301–323.Google Scholar
  12. Ferrando, P. J., & Lorenzo-Seva, U. (2017). Program FACTOR at 10: Origins, development and future directions. Psicothema, 29, 236–240.PubMedGoogle Scholar
  13. Ferrando, P. J., Lorenzo-Seva, U., & Chico, E. (2009). A general factor-analytic procedure for assessing response bias in questionnaire measures. Structural Equation Modeling, 16, 364–381. CrossRefGoogle Scholar
  14. Gruvaeus, G. T. (1970). A general approach to Procrustes pattern rotation. Psychometrika, 35, 493–505. CrossRefGoogle Scholar
  15. Hendrickson, A. E., & White, P. O. (1964). Promax: A quick method for rotation to oblique simple structure. British Journal of Mathematical and Statistical Psychology, 17, 65–70. CrossRefGoogle Scholar
  16. Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Common errors and some comment on improved practice. Educational and Psychological Measurement, 66, 393–416. CrossRefGoogle Scholar
  17. Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200. CrossRefGoogle Scholar
  18. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36. CrossRefGoogle Scholar
  19. Lorenzo-Seva, U. (1999). Promin: A method for oblique factor rotation. Multivariate Behavioral Research, 34, 347–356. CrossRefGoogle Scholar
  20. Lorenzo-Seva, U. (2003). A factor simplicity index. Psychometrika, 68, 49–60. CrossRefGoogle Scholar
  21. Lorenzo-Seva, U., & ten Berge, J. M. F. (2006). Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology, 2, 57–64. CrossRefGoogle Scholar
  22. MacCallum, R. C., & Tucker, L. R. (1991). Representing sources of error in the common-factor model: Implications for theory and practice. Psychological Bulletin, 109, 502–511. CrossRefGoogle Scholar
  23. MacCallum, R. C., Widaman, K. F., Preacher, K. J., & Hong, S. (2001). Sample size in factor analysis: The role of model error. Multivariate Behavioral Research, 36, 611–637. CrossRefPubMedGoogle Scholar
  24. MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99. CrossRefGoogle Scholar
  25. McDonald, R. P. (2005). Semiconfirmatory factor analysis: The example of anxiety and depression. Structural Equation Modeling, 12, 163–172. CrossRefGoogle Scholar
  26. Moore, T. M. (2013). Iteration of target matrices in exploratory factor analysis. Available from ProQuest Dissertations & Theses Global.Google Scholar
  27. Moore, T. M., Reise, S. P., Depaoli, S., & Haviland, M. G. (2015). Iteration of partially specified target matrices: Applications in exploratory and Bayesian confirmatory factor analysis. Multivariate Behavioral Research, 50, 149–161. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mosier, C. I. (1939). Determining a simple structure when loadings for certain tests are known. Psychometrika, 4, 149–162. CrossRefGoogle Scholar
  29. Myers, N. D., Ahn, S., & Jin, Y. (2013). Rotation to a partially specified target matrix in exploratory factor analysis: How many targets? Structural Equation Modeling, 20, 131–147. CrossRefGoogle Scholar
  30. Myers, N. D., Ahn, S., Lu, M., Celimli, S., & Zopluoglu, C. (2017). Reordering and reflecting factors for simulation studies with exploratory factor analysis. Structural Equation Modeling, 24, 112–128.CrossRefGoogle Scholar
  31. Myers, N. D., Jin, Y., Ahn, S., Celimli, S., & Zopluoglu, C. (2015). Rotation to a partially specified target matrix in exploratory factor analysis in practice. Behavior Research Methods, 47, 494–505. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Thurstone, L. L. (1947). Multiple factor analysis. Chicago, IL: University of Chicago Press.Google Scholar
  33. Tucker, L. R. (1944). A semi-analytical method of factorial rotation to simple structure. Psychometrika, 9, 777–792. CrossRefGoogle Scholar
  34. Tucker, L. R., Koopman, R. F., & Linn, R. L. (1969). Evaluation of factor analytic research procedures by means of simulated correlation matrices. Psychometrika, 34, 421–459. CrossRefGoogle Scholar
  35. Vigil-Colet, A., Morales-Vives, F., Camps, E., Tous, J., & Lorenzo-Seva, U. (2013). Desarrollo y validacion de las Escalas de Evaluacion Global de la Personalidad (OPERAS). Psicothema, 25, 100–107.PubMedGoogle Scholar
  36. Woods, S. A., & Anderson, N. R. (2016). Toward a periodic table of personality: Mapping personality scales between the five-factor model and the circumplex model. Journal of Applied Psychology, 101, 582–604. CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Universitat Rovira i VirgiliTarragonaSpain

Personalised recommendations