Advertisement

Unrestricted factor analysis of multidimensional test items based on an objectively refined target matrix

  • Urbano Lorenzo-SevaEmail author
  • Pere J. Ferrando
Article

Abstract

A common difficulty in the factor analysis of items designed to measure psychological constructs is that the factor structures obtained using exploratory factor analysis tend to be rejected if they are tested statistically with a confirmatory factor model. An alternative to confirmatory factor analysis is unrestricted factor analysis based on Procrustes rotation, which minimizes the distance from a target matrix proposed by the researcher. In the present article, we focus on the situation in which researchers propose a partially specified target matrix but are prepared to allow their initial target to be refined. Here we discuss RETAM as a new procedure for objectively refining target matrices. To date, it has been recommended that this kind of refinement be guided by human judgment. However, our approach is objective, because the threshold value is computed automatically (not decided on by the researcher) and there is no need to manually compute a number of factor rotations every time. The new procedure was tested in an extensive simulation study, and the results suggest that it may be a useful procedure in factor analysis applications based on incomplete measurement theory. Its feasibility in practice is illustrated with an empirical example from the personality domain. Finally, RETAM is implemented in a well-known noncommercial program for performing unrestricted factor analysis.

Keywords

Partially specified target matrices Orthogonal and oblique Procrustes rotations Unrestricted factor analysis Exploratory factor analysis Confirmatory factor analysis Multidimensional test items 

Notes

Author note

This project was made possible by support of the Ministerio de Economía, Industria y Competitividad, the Agencia Estatal de Investigación, and the European Regional Development Fund (Grant No. PSI2017-82307-P).

References

  1. Abad, F. J., Garcia-Garzon, E., Garrido, L. E., & Barrada, J. R. (2017). Iteration of partially specified target matrices: Application to the bi-factor case. Multivariate Behavioral Research, 52, 416–429.  https://doi.org/10.1080/00273171.2017.1301244 CrossRefPubMedGoogle Scholar
  2. Asparouhov, T., & Muthén, B. O. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438.  https://doi.org/10.1080/10705510903008204 CrossRefGoogle Scholar
  3. Ayr, L. K., Yeates, K. O., Taylor, H. G., & Browne, M. (2009). Dimensions of postconcussive symptoms in children with mild traumatic brain injuries. Journal of the International Neuropsychological Society, 15, 19–30.  https://doi.org/10.1017/S1355617708090188 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Browne, M. W. (1972a). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207–212.  https://doi.org/10.1111/j.2044-8317.1972.tb00492.x CrossRefGoogle Scholar
  5. Browne, M. W. (1972b). Orthogonal rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 115–120.  https://doi.org/10.1111/j.2044-8317.1972.tb00482.x CrossRefGoogle Scholar
  6. Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111–150.  https://doi.org/10.1207/S15327906MBR3601_05 CrossRefGoogle Scholar
  7. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230–258.  https://doi.org/10.1177/0049124192021002005 CrossRefGoogle Scholar
  8. Cliff, N. (1966). Orthogonal rotation to congruence. Psychometrika, 31, 33–42.  https://doi.org/10.1007/BF02289455 CrossRefGoogle Scholar
  9. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Cureton, E. E., & Mulaik, S. A. (1975). The weighted varimax rotation and the promax rotation. Psychometrika, 40, 183–195.  https://doi.org/10.1007/BF02291565 CrossRefGoogle Scholar
  11. Ferrando, P. J., & Lorenzo Seva, U. (2000). Unrestricted versus restricted factor analysis of multidimensional test items: Some aspects of the problem and some suggestions. Psicológica, 21, 301–323.Google Scholar
  12. Ferrando, P. J., & Lorenzo-Seva, U. (2017). Program FACTOR at 10: Origins, development and future directions. Psicothema, 29, 236–240.PubMedGoogle Scholar
  13. Ferrando, P. J., Lorenzo-Seva, U., & Chico, E. (2009). A general factor-analytic procedure for assessing response bias in questionnaire measures. Structural Equation Modeling, 16, 364–381.  https://doi.org/10.1080/10705510902751374 CrossRefGoogle Scholar
  14. Gruvaeus, G. T. (1970). A general approach to Procrustes pattern rotation. Psychometrika, 35, 493–505.  https://doi.org/10.1007/BF02291822 CrossRefGoogle Scholar
  15. Hendrickson, A. E., & White, P. O. (1964). Promax: A quick method for rotation to oblique simple structure. British Journal of Mathematical and Statistical Psychology, 17, 65–70.  https://doi.org/10.1111/j.2044-8317.1964.tb00244.x CrossRefGoogle Scholar
  16. Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Common errors and some comment on improved practice. Educational and Psychological Measurement, 66, 393–416.  https://doi.org/10.1177/0013164405282485 CrossRefGoogle Scholar
  17. Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.  https://doi.org/10.1007/BF02289233 CrossRefGoogle Scholar
  18. Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36.  https://doi.org/10.1007/BF02291575 CrossRefGoogle Scholar
  19. Lorenzo-Seva, U. (1999). Promin: A method for oblique factor rotation. Multivariate Behavioral Research, 34, 347–356.  https://doi.org/10.1207/S15327906MBR3403_3 CrossRefGoogle Scholar
  20. Lorenzo-Seva, U. (2003). A factor simplicity index. Psychometrika, 68, 49–60.  https://doi.org/10.1007/bf02296652 CrossRefGoogle Scholar
  21. Lorenzo-Seva, U., & ten Berge, J. M. F. (2006). Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology, 2, 57–64.  https://doi.org/10.1027/1614-2241.2.2.57 CrossRefGoogle Scholar
  22. MacCallum, R. C., & Tucker, L. R. (1991). Representing sources of error in the common-factor model: Implications for theory and practice. Psychological Bulletin, 109, 502–511.  https://doi.org/10.1037/0033-2909.109.3.502 CrossRefGoogle Scholar
  23. MacCallum, R. C., Widaman, K. F., Preacher, K. J., & Hong, S. (2001). Sample size in factor analysis: The role of model error. Multivariate Behavioral Research, 36, 611–637.  https://doi.org/10.1207/s15327906mbr3604_06 CrossRefPubMedGoogle Scholar
  24. MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99.  https://doi.org/10.1037/1082-989x.4.1.84 CrossRefGoogle Scholar
  25. McDonald, R. P. (2005). Semiconfirmatory factor analysis: The example of anxiety and depression. Structural Equation Modeling, 12, 163–172.  https://doi.org/10.1207/s15328007sem1201_9 CrossRefGoogle Scholar
  26. Moore, T. M. (2013). Iteration of target matrices in exploratory factor analysis. Available from ProQuest Dissertations & Theses Global.Google Scholar
  27. Moore, T. M., Reise, S. P., Depaoli, S., & Haviland, M. G. (2015). Iteration of partially specified target matrices: Applications in exploratory and Bayesian confirmatory factor analysis. Multivariate Behavioral Research, 50, 149–161.  https://doi.org/10.1080/00273171.2014.973990 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mosier, C. I. (1939). Determining a simple structure when loadings for certain tests are known. Psychometrika, 4, 149–162.  https://doi.org/10.1007/BF02288493 CrossRefGoogle Scholar
  29. Myers, N. D., Ahn, S., & Jin, Y. (2013). Rotation to a partially specified target matrix in exploratory factor analysis: How many targets? Structural Equation Modeling, 20, 131–147.  https://doi.org/10.1080/10705511.2013.742399 CrossRefGoogle Scholar
  30. Myers, N. D., Ahn, S., Lu, M., Celimli, S., & Zopluoglu, C. (2017). Reordering and reflecting factors for simulation studies with exploratory factor analysis. Structural Equation Modeling, 24, 112–128.CrossRefGoogle Scholar
  31. Myers, N. D., Jin, Y., Ahn, S., Celimli, S., & Zopluoglu, C. (2015). Rotation to a partially specified target matrix in exploratory factor analysis in practice. Behavior Research Methods, 47, 494–505.  https://doi.org/10.3758/s13428-014-0486-7 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Thurstone, L. L. (1947). Multiple factor analysis. Chicago, IL: University of Chicago Press.Google Scholar
  33. Tucker, L. R. (1944). A semi-analytical method of factorial rotation to simple structure. Psychometrika, 9, 777–792.  https://doi.org/10.1007/BF02288713 CrossRefGoogle Scholar
  34. Tucker, L. R., Koopman, R. F., & Linn, R. L. (1969). Evaluation of factor analytic research procedures by means of simulated correlation matrices. Psychometrika, 34, 421–459.  https://doi.org/10.1007/BF02290601 CrossRefGoogle Scholar
  35. Vigil-Colet, A., Morales-Vives, F., Camps, E., Tous, J., & Lorenzo-Seva, U. (2013). Desarrollo y validacion de las Escalas de Evaluacion Global de la Personalidad (OPERAS). Psicothema, 25, 100–107.PubMedGoogle Scholar
  36. Woods, S. A., & Anderson, N. R. (2016). Toward a periodic table of personality: Mapping personality scales between the five-factor model and the circumplex model. Journal of Applied Psychology, 101, 582–604.  https://doi.org/10.1037/apl0000062 CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Universitat Rovira i VirgiliTarragonaSpain

Personalised recommendations