Advertisement

Development and validation of a high-speed video system for measuring saccadic eye movement

  • Jeffrey S. Brooks
  • William J. Smith
  • Brandon M. Webb
  • Matthew D. Heath
  • James P. DickeyEmail author
Article

Abstract

Laboratory-based retroreflective and magnetic scleral search-coil technologies are the current standards for collecting saccadometric data, but such equipment is costly and cumbersome. We have validated a novel, portable, high-speed video camera-based system (Exilim EX-FH20, Casio, Tokyo, Japan) for measuring saccade reaction time (RT) and error rate in a well-lit environment. This system would enable measurements of pro- and antisaccades in athletes, which is important because antisaccade metrics provide a valid tool for concussion diagnosis and determining an athlete’s safe return to play. A total of 529 trials collected from 15 participants were used to compare saccade RT and error rate measurements of the high-speed camera system to a retroreflective video-based eye tracker (Eye-Trac 6: Applied Sciences Laboratories, Bedford, MA). Bland–Altman analysis revealed that the RT measurements made by the high-speed video system were 11 ms slower than those made by the retroreflective system. Error rate measurements were identical between the two systems. An excellent degree of reliability was found between the system measurements and in the ratings of independent researchers examining the video data. A strong association (r = .97) between the RTs determined via the retroreflective and high-speed camera systems was observed across all trials. Our high-speed camera system is portable and easily set up, does not require extensive equipment calibration, and can be used in a well-lit environment. Accordingly, the camera-based capture of saccadometric data may provide a valuable tool for neurological assessment following a concussive event and for the continued monitoring of recovery.

Keywords

Antisaccades Prosaccades Subconcussive impacts Oculomotor Brain Eye tracker Reaction time 

Notes

References

  1. Allison, R. S., Eizenman, M., & Cheung, B. S. (1996). Combined head and eye tracking system for dynamic testing of the vestibular system. IEEE Transactions on Biomedical Engineering, 43, 1073–1082.  https://doi.org/10.1109/10.541249 CrossRefGoogle Scholar
  2. Andersson, R., Nyström, M., & Holmqvist, K. (2010). Sampling frequency and eye-tracking measures: How speed affects durations, latenciesand more. Journal of Eye Movement Research, 3(3), 6.  https://doi.org/10.16910/jemr.3.3.6 Google Scholar
  3. Antoniades, C., Ettinger, U., Gaymard, B., Gilchrist, I., Kristjánsson, A., Kennard, C., … Carpenter, R. H. S. (2013). An internationally standardised antisaccade protocol. Vision Research, 84, 1–5.  https://doi.org/10.1016/j.visres.2013.02.007 CrossRefGoogle Scholar
  4. Balaban, C., Hoffer, M. E., Szczupak, M., Snapp, H., Crawford, J., Murphy, S., … Kiderman, A. (2016). Oculomotor, vestibular, and reaction time tests in mild traumatic brain injury. PLoS ONE, 11, e0162168.  https://doi.org/10.1002/lio2.74 CrossRefGoogle Scholar
  5. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  6. Bland, J. M., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327, 307–310.  https://doi.org/10.1016/S0140-6736(86)90837-8 CrossRefGoogle Scholar
  7. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.  https://doi.org/10.1163/156856897x00357 CrossRefGoogle Scholar
  8. Bucci, M. P., & Seassau, M. (2014). Vertical saccades in children: A developmental study. Experimental Brain Research, 232, 927–934.  https://doi.org/10.1007/s00221-013-3805-9 CrossRefGoogle Scholar
  9. Caplan, B., Bogner, J., Brenner, L., Cifu, D. X., Wares, J. R., Hoke, K. W., … Carne, W. (2015). Differential eye movements in mild traumatic brain injury versus normal controls. Journal of Head Trauma Rehabilitation, 30, 21–28.CrossRefGoogle Scholar
  10. Carpenter, R. H. S. (1994). Frontal cortex: Choosing where to look. Current Biology, 4, 341–343.  https://doi.org/10.1016/S0960-9822(00)00074-9 CrossRefGoogle Scholar
  11. Chatburn, R. L. (1996). Evaluation of instrument error and method agreement. American Association of Nurse Anesthetists, 64, 261–268.Google Scholar
  12. Collewijn, H., Van der Mark, F., & Jansen, T. (1975). Precise recording of human eye movements. Vision Research, 15, 447–450.  https://doi.org/10.1016/0042-6989(75)90098-x
  13. Currie, J., Ramsden, B., McArthur, C., & Maruff, P. (1991). Validation of a clinical antisaccadic eye movement test in the assessment of dementia. Archives of Neurology, 48, 644–648.  https://doi.org/10.1001/archneur.1991.00530180102024 CrossRefGoogle Scholar
  14. Curtis, C. E., Calkins, M. E., & Iacono, W. G. (2001). Saccadic disinhibition in schizophrenia patients and their first-degree biological relatives. Experimental Brain Research, 137, 228–236.  https://doi.org/10.1007/s002210000635 CrossRefGoogle Scholar
  15. DiCesare, C. A., Kiefer, A. W., Nalepka, P., & Myer, G. D. (2017). Quantification and analysis of saccadic and smooth pursuit eye movements and fixations to detect oculomotor deficits. Behavior Research Methods, 49, 258–266.  https://doi.org/10.3758/s13428-015-0693-x CrossRefGoogle Scholar
  16. Eggert, T. (2007). Eye movement recordings: Methods. Developments in Ophthalmology, 40, 15–34.  https://doi.org/10.1159/000100347 CrossRefGoogle Scholar
  17. Ettenhofer, M. L., & Barry, D. M. (2016). Saccadic impairment associated with remote history of mild traumatic brain injury. Journal of Neuropsychiatry and Clinical Neurosciences, 28, 223–231.CrossRefGoogle Scholar
  18. Ettinger, U., Kumari, V., Crawford, T. J., Davis, R. E., Sharma, T., & Corr, P. J. (2003). Reliability of smooth pursuit, fixation, and saccadic eye movements. Psychophysiology, 40, 620–628.CrossRefGoogle Scholar
  19. Evdokimidis, I., Smyrnis, N., Constantinidis, T., Stefanis, N., Avramopoulos, D., Paximadis, C., … Stefanis, C. (2002). The antisaccade task in a sample of 2,006 young men. Experimental Brain Research, 147, 45–52.  https://doi.org/10.1007/s00221-002-1208-4 CrossRefGoogle Scholar
  20. Fischer, B., & Weber, H. (1992). Characteristics of “anti” saccades in man. Experimental Brain Research, 89, 415–424.  https://doi.org/10.1007/bf00228257 CrossRefGoogle Scholar
  21. Fischer, B., & Weber, H. (1993). Express saccades and visual-attention. Behavioral and Brain Sciences, 16, 553–567.  https://doi.org/10.1017/s0140525x00031575 CrossRefGoogle Scholar
  22. Frens, M. A., & van der Geest, J. N. (2002). Scleral search coils influence saccade dynamics. Journal of Neurophysiology, 88, 692–698.  https://doi.org/10.1152/jn.00457.2001 CrossRefGoogle Scholar
  23. Galetta, K. M., Morganroth, J., Moehringer, N., Mueller, B., Hasanaj, L., Webb, N., … Galetta, S. L. (2015). Adding vision to concussion testing: A prospective study of sideline testing in youth and collegiate athletes. Journal of Neuro-Ophthalmology, 35, 235–241.  https://doi.org/10.1097/wno.0000000000000226 CrossRefGoogle Scholar
  24. Hallett, P. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18, 1279–1296.  https://doi.org/10.1016/0042-6989(78)90218-3 CrossRefGoogle Scholar
  25. Heath, M., Gillen, C., & Samani, A. (2016). Alternating between pro- and antisaccades: Switch-costs manifest via decoupling the spatial relations between stimulus and response. Experimental Brain Research, 234, 853–865.CrossRefGoogle Scholar
  26. Heitger, M. H., Anderson, T. J., Jones, R. D., Dalrymple-Alford, J. C., Frampton, C. M., & Ardagh, M. W. (2004). Eye movement and visuomotor arm movement deficits following mild closed head injury. Brain, 127, 575–590.  https://doi.org/10.1093/brain/awh066 CrossRefGoogle Scholar
  27. Heitger, M. H., Jones, R. D., Dalrymple-Alford, J. C., Frampton, C. M., Ardagh, M. W., & Anderson, T. J. (2006). Motor deficits and recovery during the first year following mild closed head injury. Brain Injury, 20, 807–824.  https://doi.org/10.1080/02699050600676354 CrossRefGoogle Scholar
  28. Heitger, M. H., Jones, R. D., Macleod, A., Snell, D. L., Frampton, C. M., & Anderson, T. J. (2009). Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain, 132, 2850–2870.  https://doi.org/10.1093/brain/awp181 CrossRefGoogle Scholar
  29. Hoffer, M. E., Balaban, C., Szczupak, M., Buskirk, J., Snapp, H., Crawford, J., … Pelusso, C. (2017). The use of oculomotor, vestibular, and reaction time tests to assess mild traumatic brain injury (mTBI) over time. Laryngoscope Investigative Otolaryngology, 2, 157–165.  https://doi.org/10.1002/lio2.74 CrossRefGoogle Scholar
  30. Hong, S., Negrello, M., Junker, M., Smilgin, A., Thier, P., & De Schutter, E. (2016). Multiplexed coding by cerebellar Purkinje neurons. eLife, 5, 13810.  https://doi.org/10.7554/eLife.13810 CrossRefGoogle Scholar
  31. Johnson, B., Hallett, M., & Slobounov, S. (2015a). Follow-up evaluation of oculomotor performance with fMRI in the subacute phase of concussion. Neurology, 85, 1163–1166.  https://doi.org/10.1212/wnl.0000000000001968 CrossRefGoogle Scholar
  32. Johnson, B., Zhang, K., Hallett, M., & Slobounov, S. (2015b). Functional neuroimaging of acute oculomotor deficits in concussed athletes. Brain Imaging and Behavior, 9, 564–573.  https://doi.org/10.1007/s11682-014-9316-x CrossRefGoogle Scholar
  33. Kassner, M., Patera, W., & Bulling, A. (2014). Pupil: An open source platform for pervasive eye tracking and mobile gaze-based interaction. Paper presented at the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle.CrossRefGoogle Scholar
  34. Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15, 155–163.  https://doi.org/10.1016/j.jcm.2016.02.012 CrossRefGoogle Scholar
  35. Kraus, M. F., Little, D. M., Donnell, A. J., Reilly, J. L., Simonian, N., & Sweeney, J. A. (2007). Oculomotor function in chronic traumatic brain injury. Cognitive and Behavioral Neurology, 20, 170–178.  https://doi.org/10.1097/WNN.0b013e318142badb CrossRefGoogle Scholar
  36. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13).Google Scholar
  37. Larson, G. E., & Perry, Z. A. (1999). Visual capture and human error. Applied Cognitive Psychology, 13, 227–236.CrossRefGoogle Scholar
  38. Lenoir, M., Crevits, L., Goethals, M., Wildenbeest, J., & Musch, E. (2000). Are better eye movements an advantage in ball games? A study of prosaccadic and antisaccadic eye movements. Perceptual and Motor Skills, 91, 546–552.CrossRefGoogle Scholar
  39. Marinides, Z., Galetta, K. M., Andrews, C. N., Wilson, J. A., Herman, D. C., Robinson, C. D., … Balcer, L. J. (2015). Vision testing is additive to the sideline assessment of sports-related concussion. Neurology: Clinical Practice, 5, 25–34.  https://doi.org/10.1212/cpj.0000000000000060 Google Scholar
  40. Morrillo, M., Di Russo, F., Pitzalis, S., & Spinelli, D. (2006). Latency of prosaccades and antisaccades in professional shooters. Medicine and Science in Sports and Exercise, 38, 388–394.  https://doi.org/10.1249/01.mss.0000185661.01802.67
  41. Munoz, D. P., Broughton, J. R., Goldring, J. E., & Armstrong, I. T. (1998). Age-related performance of human subjects on saccadic eye movement tasks. Experimental Brain Research, 121, 391–400.  https://doi.org/10.1007/s002210050473 CrossRefGoogle Scholar
  42. Munoz, D. P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5, 218–228.  https://doi.org/10.1038/nrn1345 CrossRefGoogle Scholar
  43. Peltsch, A., Hoffman, A., Armstrong, I., Pari, G., & Munoz, D. P. (2008). Saccadic impairments in Huntington’s disease. Experimental Brain Research, 186, 457.  https://doi.org/10.1007/s00221-007-1248-x CrossRefGoogle Scholar
  44. Pelz, J., Canosa, R., Kucharczyk, D., & Babcock, J. (2000). Portable eyetracking: A study of natural eye movements. Human Vision and Electronic Imaging V, 3959, 566–582.  https://doi.org/10.1117/12.387190 CrossRefGoogle Scholar
  45. Pettersson, K., Jagadeesan, S., Lukander, K., Henelius, A., Haeggstrom, E., & Muller, K. (2013). Algorithm for automatic analysis of electro-oculographic data. Biomedical Engineering OnLine, 12, 110.  https://doi.org/10.1186/1475-925X-12-110 CrossRefGoogle Scholar
  46. Portney, L. G., & Watkins, M. P. (2000). Foundations of clinical research: Applications to practice. Upper Saddle River: Prentice Hall.  https://doi.org/10.1016/S0039-6257(02)00362-4 Google Scholar
  47. R Development Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
  48. Robinson, D. A. (1963). A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Transactions on Biomedical Electronics, 10, 137–145.  https://doi.org/10.1109/tbmel.1963.4322822 CrossRefGoogle Scholar
  49. Robinson, D. A. (1981). Control of eye movements. In Handbook of physiology: Sec. 1, The nervous system: Vol. 2, Motor control. Bethesda, MD: American Physiological Society.  https://doi.org/10.1002/cphy.cp010228
  50. Roll, A., Wierzbicka, M. M., & Wolf, W. (1996). The “gap paradigm” leads to express-like saccadic reaction times in Parkinson’s disease. Experimental Brain Research, 111, 131–138.  https://doi.org/10.1007/bf00229562 CrossRefGoogle Scholar
  51. Takemura, K., Takahashi, K., Takamatsu, J., & Ogasawara, T. (2014). Estimating 3-D point-of-regard in a real environment using a head-mounted eye-tracking system. IEEE Transactions on Human-Machine Systems, 44, 531–536.  https://doi.org/10.1109/THMS.2014.2318324 CrossRefGoogle Scholar
  52. Taylor, A., & Hutton, S. (2009). The effects of task instructions on pro and antisaccade performance (Vol. 195).  https://doi.org/10.1007/s00221-009-1750-4
  53. Ting, W. K.-C., Schweizer, T. A., Topolovec-Vranic, J., & Cusimano, M. D. (2015). Antisaccadic eye movements are correlated with corpus callosum white matter mean diffusivity, Stroop performance, and symptom burden in mild traumatic brain injury and concussion. Frontiers in Neurology, 6, 271.  https://doi.org/10.3389/fneur.2015.00271 Google Scholar
  54. Titz, J., Scholz, A., & Sedlmeier, P. (2018). Comparing eye trackers by correlating their eye-metric data. Behavior Research Methods, 50, 1853–1863.  https://doi.org/10.3758/s13428-017-0954-y CrossRefGoogle Scholar
  55. Topal, C., Gerek, Ö. N., & Doǧan, A. (2008). A head-mounted sensor-based eye tracking device: eye touch system. Paper presented at the 2008 Symposium on Eye Tracking Research & Applications, Savannah.  https://doi.org/10.1145/1344471.1344494 CrossRefGoogle Scholar
  56. van der Geest, J. N., & Frens, M. A. (2002). Recording eye movements with video-oculography and scleral search coils: a direct comparison of two methods. Journal of Neuroscience Methods, 114, 185–195.  https://doi.org/10.1016/s0165-0270(01)00527-1 CrossRefGoogle Scholar
  57. Ventura, R. E., Balcer, L. J., Galetta, S. L., & Rucker, J. C. (2016). Ocular motor assessment in concussion: Current status and future directions. Journal of the Neurological Sciences, 361, 79–86.  https://doi.org/10.1016/j.jns.2015.12.010 CrossRefGoogle Scholar
  58. Webb, B., Humphreys, D., & Heath, M. (2018). Oculomotor executive dysfunction during the early and later stages of sport-related concussion recovery. Journal of Neurotrauma. Advance online publication.  https://doi.org/10.1089/neu.2018.5673
  59. Weiler, J., & Heath, M. (2012). Task-switching in oculomotor control: Unidirectional switch-cost when alternating between pro-and antisaccades. Neuroscience Letters, 530, 150–154.CrossRefGoogle Scholar
  60. Weiler, J., Mitchell, T., & Heath, M. (2014). Response suppression delays the planning of subsequent stimulus-driven saccades. PLoS ONE, 9, e86408.  https://doi.org/10.1371/journal.pone.0086408 CrossRefGoogle Scholar
  61. Wenban-Smith, M., & Findlay, J. (1991). Express saccades: Is there a separate population in humans? Experimental Brain Research, 87, 218–222.  https://doi.org/10.1007/bf00228523 CrossRefGoogle Scholar
  62. Winter, D. (2005). Kinematics. In D. Winter (Ed.), Biomechanics of human movement (3rd, pp. 229–260). Hoboken: Wiley.Google Scholar
  63. Zaki, R., Bulgiba, A., Ismail, R., & Ismail, N. A. (2012). Statistical methods used to test for agreement of medical instruments measuring continuous variables in method comparison studies: A systematic review. PLoS ONE, 7, e37908.  https://doi.org/10.1371/journal.pone.0037908 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonCanada

Personalised recommendations