Validating mouse-tracking: How design factors influence action dynamics in intertemporal decision making

  • Martin SchoemannEmail author
  • Malte Lüken
  • Tobias Grage
  • Pascal J. Kieslich
  • Stefan Scherbaum


Mouse-tracking is an increasingly popular process-tracing method. It builds on the assumption that the continuity of cognitive processing leaks into the continuity of mouse movements. Because this assumption is the prerequisite for meaningful reverse inference, it is an important question whether the assumed interaction between continuous processing and movement might be influenced by the methodological setup of the measurement. Here we studied the impacts of three commonly occurring methodological variations on the quality of mouse-tracking measures, and hence, on the reported cognitive effects. We used a mouse-tracking version of a classical intertemporal choice task that had previously been used to examine the dynamics of temporal discounting and the date–delay effect (Dshemuchadse, Scherbaum, & Goschke, 2013). The data from this previous study also served as a benchmark condition in our experimental design. Between studies, we varied the starting procedure. Within the new study, we varied the response procedure and the stimulus position. The starting procedure had the strongest influence on common mouse-tracking measures, and therefore on the cognitive effects. The effects of the response procedure and the stimulus position were weaker and less pronounced. The results suggest that the methodological setup crucially influences the interaction between continuous processing and mouse movement. We conclude that the methodological setup is of high importance for the validity of mouse-tracking as a process-tracing method. Finally, we discuss the need for standardized mouse-tracking setups, for which we provide recommendations, and present two promising lines of research toward obtaining an evidence-based gold standard of mouse-tracking.


Mouse-tracking Action dynamics Process-tracing Boundary conditions Intertemporal choice 


Supplementary material

13428_2018_1179_MOESM1_ESM.docx (463 kb)
ESM 1 (DOCX 463 kb)


  1. Barca, L., & Pezzulo, G. (2012). Unfolding visual lexical decision in time. PLoS ONE, 7, e35932. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barca, L., & Pezzulo, G. (2015). Tracking second thoughts: Continuous and discrete revision processes during visual lexical decision. PLoS ONE, 10, e116193:1–14. CrossRefGoogle Scholar
  3. Berkman, E. T., Hutcherson, C. A., Livingston, J. L., Kahn, L. E., & Inzlicht, M. (2017). Self-control as value-based choice. Current Directions in Psychological Science, 26, 422–428. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blain, B., Hollard, G., & Pessiglione, M. (2016). Neural mechanisms underlying the impact of daylong cognitive work on economic decisions. Proceedings of the National Academy of Sciences, 113, 6967–6972. CrossRefGoogle Scholar
  5. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. CrossRefPubMedGoogle Scholar
  6. Burk, D., Ingram, J. N., Franklin, D. W., Shadlen, M. N., & Wolpert, D. M. (2014). Motor effort alters changes of mind in sensorimotor decision making. PLoS ONE, 9, e92681. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Calluso, C., Committeri, G., Pezzulo, G., Lepora, N. F., & Tosoni, A. (2015). Analysis of hand kinematics reveals inter-individual differences in intertemporal decision dynamics. Experimental Brain Research, 233, 3597–3611. CrossRefPubMedGoogle Scholar
  8. Cheng, J., & González-Vallejo, C. (2017). Action dynamics in intertemporal choice reveal different facets of decision process. Journal of Behavioral Decision Making, 30, 107–122. CrossRefGoogle Scholar
  9. Dai, J., & Busemeyer, J. R. (2014). A probabilistic, dynamic, and attribute-wise model of intertemporal choice. Journal of Experimental Psychology: General, 143, 1489–1514. CrossRefGoogle Scholar
  10. Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of categorizing atypical exemplars. Memory & Cognition, 35, 15–28. CrossRefGoogle Scholar
  11. DeHart, W. B., & Odum, A. L. (2015). The effects of the framing of time on delay discounting. Journal of the Experimental Analysis of Behavior, 103, 10–21. CrossRefPubMedGoogle Scholar
  12. Dignath, D., Pfister, R., Eder, A. B., Kiesel, A., & Kunde, W. (2014). Something in the way she moves—Movement trajectories reveal dynamics of self-control. Psychonomic Bulletin & Review, 21, 809–816. CrossRefGoogle Scholar
  13. Dshemuchadse, M., Grage, T., & Scherbaum, S. (2015). Action dynamics reveal two types of cognitive flexibility in a homonym relatedness judgment task. Frontiers in Psychology, 6, 1244. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dshemuchadse, M., Scherbaum, S., & Goschke, T. (2013). How decisions emerge: Action dynamics in intertemporal decision making. Journal of Experimental Psychology: General, 142, 93–100. CrossRefGoogle Scholar
  15. Erb, C. D. (2018). The developing mind in action: Measuring manual dynamics in childhood. Journal of Cognition and Development, 19, 233–247. CrossRefGoogle Scholar
  16. Ericson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. Cambridge: MIT Press.Google Scholar
  17. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160. CrossRefGoogle Scholar
  18. Faulkenberry, T. J., Cruise, A., Lavro, D., & Shaki, S. (2016). Response trajectories capture the continuous dynamics of the size congruity effect. Acta Psychologica, 163, 114–123. CrossRefPubMedGoogle Scholar
  19. Faulkenberry, T. J., & Rey, A. E. (2014). Extending the reach of mousetracking in numerical cognition: A comment on Fischer and Hartmann (2014). Frontiers in Psychology, 5, 1436. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fischer, M. H., & Hartmann, M. (2014). Pushing forward in embodied cognition: May we mouse the mathematical mind? Frontiers in Psychology, 5, 1315:1–4. CrossRefGoogle Scholar
  21. Franco-Watkins, A. M., Mattson, R. E., & Jackson, M. D. (2015). Now or later? Attentional processing and intertemporal choice. Journal of Behavioral Decision Making, 29, 206–217. CrossRefGoogle Scholar
  22. Frederick, S., Loewenstein, G., & O’Donoghue, T. (2002). Time discounting and time preference: A critical review. Journal of Economic Literature, 40, 351–401.CrossRefGoogle Scholar
  23. Freeman, J. B. (2018). Doing psychological science by hand. Current Directions in Psychological Science, 27, 315–323. CrossRefPubMedGoogle Scholar
  24. Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method. Behavior Research Methods, 42, 226–241. CrossRefPubMedGoogle Scholar
  25. Freeman, J. B., & Dale, R. (2013). Assessing bimodality to detect the presence of a dual cognitive process. Behavior Research Methods, 45, 83–97. CrossRefPubMedGoogle Scholar
  26. Freeman, J. B., Dale, R., & Farmer, T. A. (2011). Hand in motion reveals mind in motion. Frontiers in Psychology, 35, 59:15–28. CrossRefGoogle Scholar
  27. Frisch, S., Dshemuchadse, M., Görner, M., Goschke, T., & Scherbaum, S. (2015). Unraveling the sub-processes of selective attention: Insights from dynamic modeling and continuous behavior. Cognitive Processing, 16, 377–388. CrossRefPubMedGoogle Scholar
  28. Grage, T., Schoemann, & Scherbaum, S. (2018). Lost to translation: How design factors of the mouse-tracking procedure impact the inference from action to cognition. Manuscript submitted for publication.Google Scholar
  29. Green, L., Myerson, J., & McFadden, E. (1997). Rate of temporal discounting decreases with amount of reward. Memory & Cognition, 25, 715–723. CrossRefGoogle Scholar
  30. Greiner, B. (2004). The Online Recruitment System ORSEE 2.0—A guide for the Organization of Experiments in Economics (Working Paper Series in Economics, pp. 1–67). Retrieved from
  31. Heit, E. (2015). Brain imaging, forward inference, and theories of reasoning. Frontiers in Human Neuroscience, 8, 1056:1–5. CrossRefGoogle Scholar
  32. Henson, R. (2006). Forward inference using functional neuroimaging: Dissociations versus associations. Trends in Cognitive Sciences, 10, 64–69. CrossRefPubMedGoogle Scholar
  33. Incera, S., & McLennan, C. T. (2016). Mouse tracking reveals that bilinguals behave like experts. Bilingualism: Language and Cognition, 19, 610–620. CrossRefGoogle Scholar
  34. JASP Team. (2018). JASP [Computer software]. Retrieved from
  35. Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking package. Behavior Research Methods, 49, 1652–1667. CrossRefPubMedGoogle Scholar
  36. Kieslich, P. J., & Hilbig, B. E. (2014). Cognitive conflict in social dilemmas: An analysis of response dynamics. Judgment and Decision Making, 9, 510–522.Google Scholar
  37. Kieslich, P. J., Schoemann, M., Grage, T., Hepp, J., & Scherbaum, S. (2018). Design factors in mouse-tracking: What makes a difference? Manuscript submitted for publication.Google Scholar
  38. Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2019). Mouse-tracking: A practical guide to implementation and analysis. In M. Schulte-Mecklenbeck, A. Kühberger, & J. G. Johnson (Eds.), A Handbook of Process Tracing Methods. New York, NY: Routledge.Google Scholar
  39. Koop, G. J. (2013). An assessment of the temporal dynamics of moral decisions. Judgment and Decision Making, 8, 527–539.Google Scholar
  40. Koop, G. J., & Johnson, J. G. (2011). Response dynamics: A new window on the decision process. Judgment and Decision Making, 6, 750–758.Google Scholar
  41. Koop, G. J., & Johnson, J. G. (2013). The response dynamics of preferential choice. Cognitive Psychology, 67, 151–185. CrossRefPubMedGoogle Scholar
  42. Lempert, K. M., & Phelps, E. A. (2016). The malleability of intertemporal choice. Trends in Cognitive Sciences, 20, 64–74. CrossRefPubMedGoogle Scholar
  43. Lepora, N. F., & Pezzulo, G. (2015). Embodied choice: How action influences perceptual decision making. PLoS Computational Biology, 11, e1004110:1–22. CrossRefGoogle Scholar
  44. Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Percie Du Sert, N. … Ioannidis, J. P. A. (2017). A manifesto for reproducible science. Nature Human Behaviour, 1, 21:1–9. CrossRefGoogle Scholar
  45. Myerson, J., Green, L., & Warusawitharana, M. (2001). Area under the curve as a measure of discounting. Journal of the Experimental Analysis of Behavior, 76, 235–243. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J. … Yarkoni, T. (2015). Promoting an open research culture. Nature, 348, 1422–1425. CrossRefGoogle Scholar
  47. O’Hora, D., Carey, R., Kervick, A., Crowley, D., & Dabrowski, M. (2016). Decisions in motion: Decision dynamics during intertemporal choice reflect subjective evaluation of delayed rewards. Scientific Reports, 6, 20740:1–17. CrossRefGoogle Scholar
  48. O’Hora, D., Dale, R., Piiroinen, P. T., & Connolly, F. (2013). Local dynamics in decision making: The evolution of preference within and across decisions. Scientific Reports, 3, 2210. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Oppenheimer, D. M., & Kelso, E. (2015). Information processing as a paradigm for decision making. Annual Review of Psychology, 66, 277–294. CrossRefPubMedGoogle Scholar
  50. Orquin, J. L., & Mueller Loose, S. (2013). Attention and choice: A review on eye movements in decision making. Acta Psychologica, 144, 190–206. CrossRefPubMedGoogle Scholar
  51. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437–442. CrossRefPubMedGoogle Scholar
  52. Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10, 59–63. CrossRefPubMedGoogle Scholar
  53. Quinton, J. C., Volpi, N. C., Barca, L., & Pezzulo, G. (2014). The cat is on the mat. Or is it a dog? Dynamic competition in perceptual decision making. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44, 539–551. CrossRefGoogle Scholar
  54. Read, D., Frederick, S., Orsel, B., & Rahman, J. (2005). Four score and seven years from now: The date/delay effect in temporal discounting. Management Science, 51, 1326–1335. CrossRefGoogle Scholar
  55. Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of mind in decision-making. Nature, 461, 263–266. CrossRefPubMedPubMedCentralGoogle Scholar
  56. van Rooij, M. M. J. W., Favela, L. H., Malone, M., & Richardson, M. J. (2013). Modeling the dynamics of risky choice. Ecological Psychology, 25, 293–303.
  57. Russo, J. E., & Rosen, L. D. (1975). An eye fixation analysis of multialternative choice. Memory & Cognition, 3, 267–276. CrossRefGoogle Scholar
  58. Scherbaum, S., & Dshemuchadse, M. (2018). Psychometrics of the continuous mind: Time continuous multiple regression as a method to exploit the dynamics of computer mouse movements. Manuscript submitted for publication.Google Scholar
  59. Scherbaum, S., Dshemuchadse, M., Fischer, R., & Goschke, T. (2010). How decisions evolve: The temporal dynamics of action selection. Cognition, 115, 407–416. CrossRefPubMedGoogle Scholar
  60. Scherbaum, S., Dshemuchadse, M., Leiberg, S., & Goschke, T. (2013). Harder than expected: Increased conflict in clearly disadvantageous delayed choices in a computer game. PLoS ONE, 8, e79310. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Scherbaum, S., Frisch, S., & Dshemuchadse, M. (2018a). A bird in the hand isn’t good for long: Action dynamics reveal short-term choice impulses in intertemporal choices. Experimental Psychology, 65, 23–31.CrossRefGoogle Scholar
  62. Scherbaum, S., Frisch, S., & Dshemuchadse, M. (2018b). Step by step: Harvesting the dynamics of delay discounting decisions. Quarterly Journal of Experimental Psychology, 71, 949–964. CrossRefGoogle Scholar
  63. Scherbaum, S., Frisch, S., Leiberg, S., Lade, S. J., Goschke, T., & Dshemuchadse, M. (2016). Process dynamics in delay discounting decisions: An attractor dynamics approach. Judgement and Decision Making, 11, 472–495.Google Scholar
  64. Scherbaum, S., & Kieslich, P. J. (2018). Stuck at the starting line: How the starting procedure influences mouse-tracking data. Behavior Research Methods, 50, 2097–2110. CrossRefPubMedGoogle Scholar
  65. Schoemann, M., Schulte-Mecklenbeck, M., Renkewitz, F., & Scherbaum, S. (2018). Forward inference in risky choice: Mapping gaze and decision processes. Manuscript submitted for publication.Google Scholar
  66. Schulte-Mecklenbeck, M., Johnson, J. G., Böckenholt, U., Goldstein, D. G., Russo, J. E., Sullivan, N. J., & Willemsen, M. C. (2017). Process-tracing methods in decision making: On growing up in the 70s. Current Directions in Psychological Science, 26, 442–450. CrossRefGoogle Scholar
  67. Schulte-Mecklenbeck, M., Kühberger, A., Gagl, B., & Hutzler, F. (2017). Inducing thought processes: Bringing process measures and cognitive processes closer together. Journal of Behavioral Decision Making, 30, 1001–1013. CrossRefGoogle Scholar
  68. Spivey, M. J. (2007). The continuity of mind. Oxford: Oxford University Press.Google Scholar
  69. Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time cognition. Current Directions in Psychological Science, 15, 207–211. CrossRefGoogle Scholar
  70. Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). From the cover: Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences, 102, 10393–10398. CrossRefGoogle Scholar
  71. Sullivan, N. J., Hutcherson, C. A., Harris, A., & Rangel, A. (2015). Dietary self-control is related to the speed with which attributes of healthfulness and tastiness are processed. Psychological Science, 26, 122–134. CrossRefPubMedGoogle Scholar
  72. Szaszi, B., Palfi, B., Szollosi, A., Kieslich, P. J., & Aczel, B. (2018). Thinking dynamics and individual differences: Mouse-tracking analysis of the denominator neglect task. Judgment and Decision Making, 13, 23–32. Retrieved from Google Scholar
  73. Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2018). Measuring the (dis-)continous mind: What movement trajectories reveal about cognition. Manuscript in preparation.Google Scholar
  74. Yamamoto, N., Incera, S., & McLennan, C. T. (2016). A reverse stroop task with mouse tracking. Frontiers in Psychology, 7, 670:1–12. CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Martin Schoemann
    • 1
    Email author
  • Malte Lüken
    • 1
  • Tobias Grage
    • 1
  • Pascal J. Kieslich
    • 2
  • Stefan Scherbaum
    • 1
  1. 1.Department of PsychologyTechnische Universität DresdenDresdenGermany
  2. 2.Experimental Psychology, School of Social SciencesUniversity of MannheimMannheimGermany

Personalised recommendations