PLAViMoP: How to standardize and simplify the use of point-light displays

  • Arnaud Decatoire
  • Sophie-Anne Beauprez
  • Jean Pylouster
  • Patrick Lacouture
  • Yannick Blandin
  • Christel Bidet-Ildei


The study of biological point-light displays (PLDs) has fascinated researchers for more than 40 years. However, the mechanisms underlying PLD perception remain unclear, partly due to difficulties with precisely controlling and transforming PLD sequences. Furthermore, little agreement exists regarding how transformations are performed. This article introduces a new free-access program called PLAViMoP (Point-Light Display Visualization and Modification Platform) and presents the algorithms for PLD transformations actually included in the software. PLAViMoP fulfills two objectives. First, it standardizes and makes clear many classical spatial and kinematic transformations described in the PLD literature. Furthermore, given its optimized interface, PLAViMOP makes these transformations easy and fast to achieve. Overall, PLAViMoP could directly help scientists avoid technical difficulties and make possible the use of PLDs for nonacademic applications.


Point-light displays Action observation Software Kinematics transfomations Spatial transformations Masking dots 


  1. Abbruzzese, G., Avanzino, L., Marchese, R., & Pelosin, E. (2015). Action observation and motor imagery: Innovative cognitive tools in the rehabilitation of Parkinson’s Disease. Parkinson’s Disease, 2015, 124214. PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anderson, L. C., Bolling, D. Z., Schelinski, S., Coffman, M. C., Pelphrey, K. A., & Kaiser, M. D. (2013). Sex differences in the development of brain mechanisms for processing biological motion. NeuroImage, 83, 751–760. PubMedCrossRefGoogle Scholar
  3. Andrieux, M., & Proteau, L. (2014). Mixed observation favors motor learning through better estimation of the model’s performance. Experimental Brain Research, 232, 3121–3132. PubMedCrossRefGoogle Scholar
  4. Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33, 717–746.PubMedCrossRefGoogle Scholar
  5. Badets, A., Bidet-Ildei, C., & Pesenti, M. (2015). Influence of biological kinematics on abstract concept processing. Quarterly Journal of Experimental Psychology, 68, 608–618. CrossRefGoogle Scholar
  6. Bardi, L., Regolin, L., & Simion, F. (2011). Biological motion preference in humans at birth: Role of dynamic and configural properties. Developmental Science, 14, 353–359. PubMedCrossRefGoogle Scholar
  7. Bardi, L., Regolin, L., & Simion, F. (2014). The first time ever I saw your feet: Inversion effect in newborns’ sensitivity to biological motion. Developmental Psychology, 50, 986–993. PubMedCrossRefGoogle Scholar
  8. Barre, A., & Armand, S. (2014). Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data. Computer Methods and Programs in Biomedicine, 114, 80–87. PubMedCrossRefGoogle Scholar
  9. Beardsworth, T., & Buckner, T. (1981). The ability to recognize oneself from a video recording of one’s movements without seeing one’s body. Bulletin of the Psychonomic Society, 18, 19–22.CrossRefGoogle Scholar
  10. Beauprez, S.-A., & Bidet-Ildei, C. (2017). Perceiving a biological human movement facilitates action verb processing. Current Psychology.
  11. Beauprez, S.-A., & Bidet-Ildei, C. (2018). The kinematics, not the orientation, of an action influences language processing. Journal of Experimental Psychology: Human Perception and Performance.Google Scholar
  12. Beintema, J. A., & Lappe, M. (2002). Perception of biological motion without local image motion. Proceedings of the National Academy of Sciences, 99, 5661–5663.CrossRefGoogle Scholar
  13. Bellelli, G., Buccino, G., Bernardini, B., Padovani, A., & Trabucchi, M. (2010). Action observation treatment improves recovery of postsurgical orthopedic patients: Evidence for a top-down effect? Archives of Physical Medicine and Rehabilitation, 91, 1489–1494. PubMedCrossRefGoogle Scholar
  14. Bertenthal, B. I., & Pinto, J. (1994). Global processing of biological motions. Psychological Science, 5, 221–225. CrossRefGoogle Scholar
  15. Bertenthal, B. I., Proffitt, D. R., & Cutting, J. E. (1984). Infant sensitivity to figural coherence in biomechanical motions. Journal of Experimental Child Psychology, 37, 213–230.PubMedCrossRefGoogle Scholar
  16. Bertenthal, B. I., Proffitt, D. R., & Kramer, S. J. (1987). Perception of biomechanical motions by infants: implementation of various processing constraints. Journal of Experimental Psychology: Human Perception and Performance, 13, 577–585. PubMedCrossRefGoogle Scholar
  17. Bertenthal, B. I., Proffitt, D. R., Spetner, N. B., & Thomas, M. A. (1985). The development of infant sensitivity to biomechanical motions. Child Development, 56, 531–543.PubMedCrossRefGoogle Scholar
  18. Bidet-Ildei, C., Chauvin, A., & Coello, Y. (2010). Observing or producing a motor action improves later perception of biological motion: Evidence for a gender effect. Acta Psychologica, 134, 215–224. PubMedCrossRefGoogle Scholar
  19. Bidet-Ildei, C., Gimenes, M., Toussaint, L., Almecija, Y., & Badets, A. (2017). Sentence plausibility influences the link between action words and the perception of biological human movements. Psychological Research, 81, 806–813. PubMedCrossRefGoogle Scholar
  20. Bidet-Ildei, C., Gimenes, M., Toussaint, L., Beauprez, S.-A., & Badets, A. (2017). Painful semantic context modulates the relationship between action words and biological movement perception. Journal of Cognitive Psychology, 29, 821–831. CrossRefGoogle Scholar
  21. Bidet-Ildei, C., Kitromilides, E., Orliaguet, J. P., Pavlova, M., & Gentaz, E. (2014). Preference for point-light human biological motion in newborns: Contribution of translational displacement. Developmental Psychology, 50, 113–120. PubMedCrossRefGoogle Scholar
  22. Bidet-Ildei, C., Kitromilides-Salerio, E., Orliaguet, J. P., & Badets, A. (2011). Perceptual judgements of handwriting and pointing movements: Influence of kinematics rules. In A. M. Columbus (Ed.), Advances in psychology research (Vol. 77, pp. 307–316). New York: Nova Science.Google Scholar
  23. Bidet-Ildei, C., Meary, D., & Orliaguet, J. P. (2008). Visual preference for isochronic movement does not necessarily emerge from movement kinematics: A challenge for the motor simulation theory. Neuroscience Letters, 430, 236–240. PubMedCrossRefGoogle Scholar
  24. Bidet-Ildei, C., Orliaguet, J. P., & Coello, Y. (2011). Rôle des représentations motrices dans la perception visuelle des mouvements humains. L’Année Psychologique, 111, 409–445. CrossRefGoogle Scholar
  25. Bidet-Ildei, C., Orliaguet, J. P., Sokolov, A. N., & Pavlova, M. (2006). Perception of elliptic biological motion. Perception, 35, 1137–1147.PubMedCrossRefGoogle Scholar
  26. Bidet-Ildei, C., Sparrow, L., & Coello, Y. (2011). Reading action word affects the visual perception of biological motion. Acta Psychologica, 137, 330–334. PubMedCrossRefGoogle Scholar
  27. Bidet-Ildei, C., & Toussaint, L. (2015). Are judgments for action verbs and point-light human actions equivalent? Cognitive Processing, 16, 57–67. PubMedCrossRefGoogle Scholar
  28. Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47–73. PubMedCrossRefGoogle Scholar
  29. Blandin, Y., Lhuisset, L., & Proteau, L. (1999). Cognitive processes underlying observational learning of motor skills. Quarterly Journal of Experimental Psychology, 52A, 957–979. CrossRefGoogle Scholar
  30. Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16, 3737–3744.PubMedCrossRefGoogle Scholar
  31. Bouquet, C. A., Gaurier, V., Shipley, T., Toussaint, L., & Blandin, Y. (2007). Influence of the perception of biological or non-biological motion on movement execution. Journal of Sports Science, 25, 519–530.CrossRefGoogle Scholar
  32. Breslin, G., Hodges, N. J., & Williams, A. M. (2009). Effect of information load and time on observational learning. Research Quarterly for Exercise and Sport, 80, 480–490. PubMedCrossRefGoogle Scholar
  33. Chaminade, T., Meary, D., Orliaguet, J. P., & Decety, J. (2001). Is perceptual anticipation a motor simulation? A PET study. NeuroReport, 12, 3669–3674.PubMedCrossRefGoogle Scholar
  34. Chandrasekaran, C., Turner, L., Bülthoff, H. H., & Thornton, I. M. (2010). Attentional networks and biological motion. Psihologija, 43, 5–20.CrossRefGoogle Scholar
  35. Chang, D. H., & Troje, N. F. (2008). Perception of animacy and direction from local biological motion signals. Journal of Vision, 8(5), 3.1-10. CrossRefGoogle Scholar
  36. Chang, D. H., & Troje, N. F. (2009). Characterizing global and local mechanisms in biological motion perception. Journal of Vision, 9(5), 8.1-10. CrossRefGoogle Scholar
  37. Chary, C., Méary, D., Orliaguet, J. P., David, D., Moreaud, O., & Kandel, S. (2004). Influence of motor disorders on the visual perception of human movements in a case of peripheral dysgraphia. Neurocase, 10, 223–232. PubMedCrossRefGoogle Scholar
  38. Chouchourelou, A., Matsuka, T., Harber, K., & Shiffrar, M. (2006). The visual analysis of emotional actions. Social Neuroscience, 1, 63–74.PubMedCrossRefGoogle Scholar
  39. Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., & Rose, D. (2005). The perception of emotion from body movement in point-light displays of interpersonal dialogue. Perception, 34, 1171–1180.PubMedCrossRefGoogle Scholar
  40. Cusack, J. P., Williams, J. H. G., & Neri, P. (2015). Action perception is intact in autism spectrum disorder. Journal of Neuroscience, 35, 1849–1857. PubMedCrossRefGoogle Scholar
  41. Cutting, J. E. (1978). Generation of synthetic male and female walkers through manipulation of a biomechanical invariant. Perception, 7, 393–405.PubMedCrossRefGoogle Scholar
  42. Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception & Psychophysics, 44, 339–347.CrossRefGoogle Scholar
  43. D’Innocenzo, G., Gonzalez, C. C., Williams, A. M., & Bishop, D. T. (2016). Looking to learn: The effects of visual guidance on observational learning of the golf swing. PLoS ONE, 11, e155442. CrossRefGoogle Scholar
  44. Daems, A., & Verfaillie, K. (1999). Viewpoint-dependent priming effects in the perception of human actions and body postures. Visual Cognition, 6, 665–693.CrossRefGoogle Scholar
  45. Davila, A., Schouten, B., & Verfaillie, K. (2014). Perceiving the direction of articulatory motion in point-light actions. PLoS ONE, 9, e115117. PubMedPubMedCentralCrossRefGoogle Scholar
  46. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42. PubMedCrossRefGoogle Scholar
  47. Dittrich, W. H. (1993). Action categories and the perception of biological motion. Perception, 22, 15–22. PubMedCrossRefGoogle Scholar
  48. Dittrich, W. H., Troscianko, T., Lea, S. E., & Morgan, D. (1996). Perception of emotion from dynamic point-light displays represented in dance. Perception, 25, 727–738.PubMedCrossRefGoogle Scholar
  49. Elsner, C., Falck-Ytter, T., & Gredeback, G. (2012). Humans anticipate the goal of other people’s point-light actions. Frontiers in Psychology, 3, 120. PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ertelt, D., & Binkofski, F. (2012). Action observation as a tool for neurorehabilitation to moderate motor deficits and aphasia following stroke. Neural Regeneration Research, 7, 2063–2074. PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ertelt, D., Small, S., Solodkin, A., Dettmers, C., McNamara, A., Binkofski, F., & Buccino, G. (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage, 36(Suppl. 2), T164–T173.PubMedCrossRefGoogle Scholar
  52. Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the motor system in language comprehension. Quarterly Journal of Experimental Psychology, 61, 825–850.CrossRefGoogle Scholar
  53. Freire, A., Lewis, T. L., Maurer, D., & Blake, R. (2006). The development of sensitivity to biological motion in noise. Perception, 35, 647–657.PubMedCrossRefGoogle Scholar
  54. Freitag, C. M., Konrad, C., Häberlen, M., Kleser, C., von Gontard, A., Reith, W., … Krick, C. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46, 1480–1494. PubMedCrossRefGoogle Scholar
  55. Galazka, M. A., Roché, L., Nyström, P., & Falck-Ytter, T. (2014). Human infants detect other people’s interactions based on complex patterns of kinematic information. PLoS ONE, 9, e112432. PubMedPubMedCentralCrossRefGoogle Scholar
  56. Garcia, J. O., & Grossman, E. D. (2008). Necessary but not sufficient: Motion perception is required for perceiving biological motion. Vision Research, 48, 1144–1149. PubMedCrossRefGoogle Scholar
  57. Gatti, R., Tettamanti, A., Gough, P. M., Riboldi, E., Marinoni, L., & Buccino, G. (2013). Action observation versus motor imagery in learning a complex motor task: A short review of literature and a kinematics study. Neuroscience Letters, 540, 37–42. PubMedCrossRefGoogle Scholar
  58. Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Review Neuroscience, 4, 179–192. CrossRefGoogle Scholar
  59. Grèzes, J., Fonlupt, P., Bertenthal, B., Delon-Martin, C., Segebarth, C., & Decety, J. (2001). Does perception of biological motion rely on specific brain regions? NeuroImage, 13, 775–785. PubMedCrossRefGoogle Scholar
  60. Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711–720. PubMedCrossRefGoogle Scholar
  61. Grossman, E. D., Battelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45, 2847–2853. PubMedCrossRefGoogle Scholar
  62. Grossman, E. D., & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41, 1475–1482.PubMedCrossRefGoogle Scholar
  63. Grossman, E. D., & Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35, 1167–1175.PubMedCrossRefGoogle Scholar
  64. Hayes, S. J., Hodges, N. J., Scott, M. A., Horn, R. R., & Williams, A. M. (2007a). The efficacy of demonstrations in teaching children an unfamiliar movement skill: The effects of object-orientated actions and point-light demonstrations. Journal of Sports Science, 25(5), 559–575.Google Scholar
  65. Hayes, S. J., Hodges, N. J., Huys, R., & Mark Williams, A. (2007b). Endpoint focus manipulations to determine what information is used during observational learning. Acta Psychologica (Amst), 126(2), 120–137.Google Scholar
  66. Hirai, M., & Hiraki, K. (2005). An event-related potentials study of biological motion perception in human infants. Cognitive Brain Research, 22, 301–304.PubMedCrossRefGoogle Scholar
  67. Hirai, M., Senju, A., Fukushima, H., & Hiraki, K. (2005). Active processing of biological motion perception: an ERP study. Cognitive Brain Research, 23, 387–396.PubMedCrossRefGoogle Scholar
  68. Hiris, E. (2007). Detection of biological and nonbiological motion. Journal of Vision, 7(12), 4.1–16. CrossRefGoogle Scholar
  69. Hiris, E., Humphrey, D., & Stout, A. (2005). Temporal properties in masking biological motion. Perception & Psychophysics, 67, 435–443.CrossRefGoogle Scholar
  70. Hiris, E., Krebeck, A., Edmonds, J., & Stout, A. (2005). What learning to see arbitrary motion tells us about biological motion perception. Journal of Experimental Psychology: Human Perception and Performance, 31, 1096–1106. PubMedCrossRefGoogle Scholar
  71. Horn, R. R., Williams, A. M., & Scott, M. A. (2002). Learning from demonstrations: the role of visual search during observational learning from video and point-light models. Journal of Sports Science, 20, 253–269.CrossRefGoogle Scholar
  72. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ikeda, H., Blake, R., & Watanabe, K. (2005). Eccentric perception of biological motion is unscalably poor. Vision Research, 45, 1935–1943.PubMedCrossRefGoogle Scholar
  74. Jastorff, J., Kourtzi, Z., & Giese, M. A. (2006). Learning to discriminate complex movements: biological versus artificial trajectories. Journal of Vision, 6(8), 3.791–804. CrossRefGoogle Scholar
  75. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201–211. CrossRefGoogle Scholar
  76. Jokisch, D., Daum, I., Suchan, B., & Troje, N. F. (2005). Structural encoding and recognition of biological motion: Evidence from event-related potentials and source analysis. Behavioral Brain Research, 157, 195–204. CrossRefGoogle Scholar
  77. Jokisch, D., & Troje, N. F. (2003). Biological motion as a cue for the perception of size. Journal of Vision, 3(4), 1.252–264. CrossRefGoogle Scholar
  78. Jung, W. H., Gu, B.-M., Kang, D.-H., Park, J.-Y., Yoo, S. Y., Choi, C.-H., … Kwon, J. S. (2009). BOLD response during visual perception of biological motion in obsessive-compulsive disorder. European Archives of Psychiatry and Clinical Neuroscience, 259, 46. PubMedCrossRefGoogle Scholar
  79. Kaiser, M. D., Hudac, C. M., Shultz, S., Lee, S. M., Cheung, C., Berken, A. M., … Pelphrey, K. A. (2010). Neural signatures of autism. Proceedings of the National Academy of Sciences, 107, 21223–21228. CrossRefGoogle Scholar
  80. Kim, J., Doop, M. L., Blake, R., & Park, S. (2005). Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 77, 299–307.PubMedCrossRefGoogle Scholar
  81. Kim, J., Jung, E. L., Lee, S.-H., & Blake, R. (2015). A new technique for generating disordered point-light animations for the study of biological motion perception. Journal of Vision, 15(11), 13. PubMedPubMedCentralCrossRefGoogle Scholar
  82. Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459, 257–261. PubMedPubMedCentralCrossRefGoogle Scholar
  83. Koldewyn, K., Whitney, D., & Rivera, S. M. (2010). The psychophysics of visual motion and global form processing in autism. Brain, 133(Pt. 2):599–610. PubMedCrossRefGoogle Scholar
  84. Kozlowski, L., & Cutting, J. E. (1977). Recognizing the sex of a walker from dynamic point-light displays. Perception & Psychophysics, 21, 575–580.CrossRefGoogle Scholar
  85. Legault, I., Troje, N. F., & Faubert, J. (2012). Healthy older observers cannot use biological-motion point-light information efficiently within 4 m of themselves. I-Perception, 3, 104–111. PubMedPubMedCentralCrossRefGoogle Scholar
  86. Louis-Dam, A., Orliaguet, J.-P., & Coello, Y. (1999). Perceptual anticipation in grasping movement: When does it become possible? In M. A. Grealy & J. A. Thomson (Eds.), Studies in perception and action V: Tenth International Conference on Perception and Action (pp. 135–139). Mahwah: Erlbaum.Google Scholar
  87. Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210–220. PubMedCrossRefGoogle Scholar
  88. Marangolo, P., Bonifazi, S., Tomaiuolo, F., Craighero, L., Coccia, M., Altoe, G., … Cantagallo, A. (2010). Improving language without words: First evidence from aphasia. Neuropsychologia, 48, 3824–3833. PubMedCrossRefGoogle Scholar
  89. Martel, L., Bidet-Ildei, C., & Coello, Y. (2011). Anticipating the terminal position of an observed action: Effect of kinematic, structural, and identity information. Visual Cognition, 19, 785–798. CrossRefGoogle Scholar
  90. Meary, D., Kitromilides, E., Mazens, K., Graff, C., & Gentaz, E. (2007). Four-day-old human neonates look longer at non-biological motions of a single point-of-light. PLoS ONE, 2, e186. PubMedPubMedCentralCrossRefGoogle Scholar
  91. Moon, H., Robson, N. P., Langari, R., & Buchanan, J. J. (2012). Experimental observations on the human arm motion planning under an elbow joint constraint. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012 (pp. 3870–3873). Piscataway: IEEE Press. doi:10.1109/EMBC.2012.6346812Google Scholar
  92. Moon, H., Robson, N. P., Langari, R., & Buchanan, J. J. (2015). Experimental observations on human reaching motion planning with and without reduced mobility. In W. Adams (Ed.), Robot kinematics and motion planning. New York: Nova Science.Google Scholar
  93. Nackaerts, E., Wagemans, J., Helsen, W., Swinnen, S. P., Wenderoth, N., & Alaerts, K. (2012). Recognizing biological motion and emotions from point-light displays in autism spectrum disorders. PLoS ONE, 7, e44473. PubMedPubMedCentralCrossRefGoogle Scholar
  94. Neri, P., & Levi, D. M. (2007). Temporal dynamics of figure–ground segregation in human vision. Journal of Neurophysiology, 97, 951–957. PubMedCrossRefGoogle Scholar
  95. Orban de Xivry, J. J., Coppe, S., Lefevre, P., & Missal, M. (2010). Biological motion drives perception and action. Journal of Vision, 10(2), 6.1-11. CrossRefGoogle Scholar
  96. Park, S. D., Song, H. S., & Kim, J. Y. (2014). The effect of action observation training on knee joint function and gait ability in total knee replacement patients. Journal of Exercise Rehabilitation, 10, 168–171. PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pavlova, M. (2012). Biological motion processing as a hallmark of social cognition. Cerebral Cortex, 22, 981–995. PubMedCrossRefGoogle Scholar
  98. Pavlova, M., Bidet-Ildei, C., Sokolov, A. N., Braun, C., & Krageloh-Mann, I. (2009). Neuromagnetic response to body motion and brain connectivity. Journal of Cognitive Neuroscience, 21, 837–846.PubMedCrossRefGoogle Scholar
  99. Pavlova, M., Krageloh-Mann, I., Sokolov, A., & Birbaumer, N. (2001). Recognition of point-light biological motion displays by young children. Perception, 30, 925–933.PubMedCrossRefGoogle Scholar
  100. Pavlova, M., & Sokolov, A. (2000). Orientation specificity in biological motion perception. Perception & Psychophysics, 62, 889–899.CrossRefGoogle Scholar
  101. Pavlova, M., & Sokolov, A. (2003). Prior knowledge about display inversion in biological motion perception. Perception, 32, 937–946.PubMedCrossRefGoogle Scholar
  102. Pavlova, M., Sokolov, A. N., & Bidet-Ildei, C. (2015). Sex differences in the neuromagnetic cortical response to biological motion. Cerebral Cortex, 25, 3468–3474. PubMedCrossRefGoogle Scholar
  103. Pavlova, M., Staudt, M., Sokolov, A., Birbaumer, N., & Krageloh-Mann, I. (2003). Perception and production of biological movement in patients with early periventricular brain lesions. Brain, 126, 692–701.PubMedCrossRefGoogle Scholar
  104. Peelen, M. V., Wiggett, A. J., & Downing, P. E. (2006). Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron, 49, 815–822. PubMedCrossRefGoogle Scholar
  105. Peuskens, H., Vanrie, J., Verfaillie, K., & Orban, G. A. (2005). Specificity of regions processing biological motion. European Journal of Neuroscience, 21, 2864–2875.PubMedCrossRefGoogle Scholar
  106. Pilz, K. S., Bennett, P. J., & Sekuler, A. B. (2010). Effects of aging on biological motion discrimination. Vision Research, 50, 211–219. PubMedCrossRefGoogle Scholar
  107. Pinto, J., & Shiffrar, M. (1999). Subconfigurations of the human form in the perception of biological motion displays. Acta Psychologica, 102, 293–318.PubMedCrossRefGoogle Scholar
  108. Pollick, F. E., Kay, J. W., Heim, K., & Stringer, R. (2005). Gender recognition from point-light walkers. Journal of Experimental Psychology: Human Perception and Performance, 31, 1247–1265. PubMedCrossRefGoogle Scholar
  109. Pozzo, T., Papaxanthis, C., Petit, J. L., Schweighofer, N., & Stucchi, N. (2006). Kinematic features of movement tunes perception and action coupling. Behavioral Brain Research, 169, 75–82.CrossRefGoogle Scholar
  110. Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Review Neuroscience, 6, 576–582. CrossRefGoogle Scholar
  111. Rehg, J. M., Morris, D. D., & Kanade, T. (2003). Ambiguities in visual tracking of articulated objects using two- and three-dimensional models. International Journal of Robotics Research, 22, 393–418. CrossRefGoogle Scholar
  112. Reid, V. M., Hoehl, S., & Striano, T. (2006). The perception of biological motion by infants: An event-related potential study. Neuroscience Letters, 395, 211–214.PubMedCrossRefGoogle Scholar
  113. Robin, C., Toussaint, L., Blandin, Y., & Proteau, L. (2005). Specificity of learning in a video-aiming task: modIfying the salience of dynamic visual cues. Journal of Motor Behavior, 37, 367–376. PubMedCrossRefGoogle Scholar
  114. Rohbanfard, H., & Proteau, L. (2011). Learning through observation: A combination of expert and novice models favors learning. Experimental Brain Research, 215(3‑4), 183–197.
  115. Runeson, S., & Frykholm, G. (1981). Visual perception of lifted weight. Journal of Experimental Psychology: Human Perception and Performance, 7, 733–740. PubMedCrossRefGoogle Scholar
  116. Saunier, G., Martins, E. F., Dias, E. C., de Oliveira, J. M., Pozzo, T., & Vargas, C. D. (2013). Electrophysiological correlates of biological motion permanence in humans. Behavioural Brain Research, 236, 166–174. PubMedCrossRefGoogle Scholar
  117. Saygin, A. P., Wilson, S. M., Hagler, D. J., Jr., Bates, E., & Sereno, M. I. (2004). Point-light biological motion perception activates human premotor cortex. Journal of Neuroscience, 24, 6181–6188. PubMedCrossRefGoogle Scholar
  118. Shipley, T. F. (2003). The effect of object and event orientation on perception of biological motion. Psychological Science, 14, 377–380.PubMedCrossRefGoogle Scholar
  119. Shipley, T. F., & Brumberg, J. S. (2004). Markerless motion-capture for point-light displays. Retrieved from
  120. Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences, 105, 809–813. CrossRefGoogle Scholar
  121. Sokolov, A. A., Gharabaghi, A., Tatagiba, M. S., & Pavlova, M. (2010). Cerebellar engagement in an action observation network. Cerebral Cortex, 20, 486–491.PubMedCrossRefGoogle Scholar
  122. Spencer, J. M. Y., Sekuler, A. B., Bennett, P. J., Giese, M. A., & Pilz, K. S. (2016). Effects of aging on identifying emotions conveyed by point-light walkers. Psychology and Aging, 31, 126–138. PubMedCrossRefGoogle Scholar
  123. Stadler, W., Springer, A., Parkinson, J., & Prinz, W. (2012). Movement kinematics affect action prediction: comparing human to non-human point-light actions. Psychological Research, 76, 395–406. PubMedCrossRefGoogle Scholar
  124. Sumi, S. (1984). Upside-down presentation of the Johansson moving light-spot pattern. Perception, 13, 283–286.PubMedCrossRefGoogle Scholar
  125. Thoresen, J. C., Vuong, Q. C., & Atkinson, A. P. (2012). First impressions: gait cues drive reliable trait judgements. Cognition, 124, 261–271. PubMedCrossRefGoogle Scholar
  126. Thornton, I. M., Pinto, J., & Shiffrar, M. (1998). The visual perception of human locomotion. Cognitive Neuropsychology, 15, 535–552.PubMedCrossRefGoogle Scholar
  127. Thornton, I. M., Rensink, R. A., & Shiffrar, M. (2002). Active versus passive processing of biological motion. Perception, 31, 837–853.PubMedCrossRefGoogle Scholar
  128. Thurman, S. M., & Grossman, E. D. (2008). Temporal “Bubbles” reveal key features for point-light biological motion perception. Journal of Vision, 8(3), 28.1-11. CrossRefGoogle Scholar
  129. Thurman, S. M., & Lu, H. (2014). Perception of social interactions for spatially scrambled biological motion. PLOS ONE, 9, e112539. PubMedPubMedCentralCrossRefGoogle Scholar
  130. Troje, N. F. (2002). Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision, 2(5), 2.371–387. CrossRefGoogle Scholar
  131. Troje, N. F., Sadr, J., Geyer, H., & Nakayama, K. (2006). Adaptation aftereffects in the perception of gender from biological motion. Journal of Vision, 6(8), 7.850–857. CrossRefGoogle Scholar
  132. Troje, N. F., & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “life detector”? Current Biology, 16, 821–824. PubMedCrossRefGoogle Scholar
  133. Troje, N. F., Westhoff, C., & Lavrov, M. (2005). Person identification from biological motion: Effects of structural and kinematic cues. Perception & Psychophysics, 67, 667–675. CrossRefGoogle Scholar
  134. Ulloa, E. R., & Pineda, J. A. (2007). Recognition of point-light biological motion: Mu rhythms and mirror neuron activity. Behavioral Brain Research, 183, 188–194.CrossRefGoogle Scholar
  135. Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., & Belliveau, J. W. (2001). Functional neuroanatomy of biological motion perception in humans. Proceedings of the National Academy of Sciences, 98, 11656–11661.Google Scholar
  136. van Boxtel, J. J. A., & Lu, H. (2013). A biological motion toolbox for reading, displaying, and manipulating motion capture data in research settings. Journal of Vision, 13(12), 7. PubMedCrossRefGoogle Scholar
  137. van Kemenade, B. M., Muggleton, N., Walsh, V., & Saygin, A. P. (2012). Effects of TMS over premotor and superior temporal cortices on biological motion perception. Journal of Cognitive Neuroscience, 24, 896–904. PubMedCrossRefGoogle Scholar
  138. Vanrie, J., Dekeyser, M., & Verfaillie, K. (2004). Bistability and biasing effects in the perception of ambiguous point-light walkers. Perception, 33, 547–560. PubMedCrossRefGoogle Scholar
  139. Verfaillie, K. (2000). Perceiving human locomotion: Priming effects in direction discrimination. Brain and Cognition, 44, 192–213.PubMedCrossRefGoogle Scholar
  140. Vogt, S., & Thomaschke, R. (2007). From visuo-motor interactions to imitation learning: Behavioural and brain imaging studies. Journal of Sports Science, 25, 497–517. CrossRefGoogle Scholar
  141. Weeks, D. L., & Anderson, L. P. (2000). The interaction of observational learning with overt practice: effects on motor skill learning. Acta Psychologica, 104, 259–271.PubMedCrossRefGoogle Scholar
  142. Weinhandl, J. T., & O’Connor, K. M. (2010). Assessment of a greater trochanter-based method of locating the hip joint center. Journal of Biomechanics, 43, 2633–2636. PubMedCrossRefGoogle Scholar
  143. Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101, 278–289.PubMedCrossRefGoogle Scholar
  144. Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12, 739–751. PubMedCrossRefGoogle Scholar
  145. Yoon, J. M., & Johnson, S. C. (2009). Biological motion displays elicit social behavior in 12-month-olds. Child Development, 80, 1069–1075. PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Arnaud Decatoire
    • 1
  • Sophie-Anne Beauprez
    • 2
  • Jean Pylouster
    • 2
  • Patrick Lacouture
    • 1
  • Yannick Blandin
    • 2
  • Christel Bidet-Ildei
    • 2
  1. 1.Institut PPRIME (UPR CNRS 3346), Université de Poitiers, Centre National de la Recherche ScientifiquePoitiersFrance
  2. 2.Centre de Recherches sur la Cognition et l’Apprentissage (UMR CNRS 7295)Université de Poitiers, Université de Tours, Centre National de la Recherche ScientifiquePoitiersFrance

Personalised recommendations