Using task effort and pupil size to track covert shifts of visual attention independently of a pupillary light reflex

  • Andreas Brocher
  • Raphael Harbecke
  • Tim Graf
  • Daniel Memmert
  • Stefanie Hüttermann


We tested the link between pupil size and the task effort involved in covert shifts of visual attention. The goal of this study was to establish pupil size as a marker of attentional shifting in the absence of luminance manipulations. In three experiments, participants evaluated two stimuli that were presented peripherally, appearing equidistant from and on opposite sides of eye fixation. The angle between eye fixation and the peripherally presented target stimuli varied from 12.5° to 42.5°. The evaluation of more distant stimuli led to poorer performance than did the evaluation of more proximal stimuli throughout our study, confirming that the former required more effort than the latter. In addition, in Experiment 1 we found that pupil size increased with increasing angle and that this effect could not be reduced to the operation of low-level visual processes in the task. In Experiment 2 the pupil dilated more strongly overall when participants evaluated the target stimuli, which required shifts of attention, than when they merely reported on the target’s presence versus absence. Both conditions yielded larger pupils for more distant than for more proximal stimuli, however. In Experiment 3, we manipulated task difficulty more directly, by changing the contrast at which the target stimuli were presented. We replicated the results from Experiment 1 only with the high-contrast stimuli. With stimuli of low contrast, ceiling effects in pupil size were observed. Our data show that the link between task effort and pupil size can be used to track the degree to which an observer covertly shifts attention to or detects stimuli in peripheral vision.


Visual attention Attentional shift Pupillometry Breadth of attention Task effort 


  1. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292.CrossRefPubMedGoogle Scholar
  2. Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinari, G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 142–162). Cambridge, UK: Cambridge University Press.Google Scholar
  3. Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to bright surfaces enhances the pupillary light reflex. Journal of Neuroscience, 33, 2199–2204.CrossRefPubMedGoogle Scholar
  4. Binda, P., Pereverzeva, M., & Murray, S. O. (2014). Pupil size reflects the focus of feature-based attention. Journal of Neurophysiology, 112, 3046–3052.CrossRefPubMedGoogle Scholar
  5. Blom, T., Mathôt, S., Olivers, C. N. L., & Van der Stigchel, S. (2016). The pupillary light response reflects encoding, but not maintenance, in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42, 1716–1723. PubMedGoogle Scholar
  6. Brocher, A., & Graf, T. (2016). Pupil old/new effects reflect stimulus encoding and decoding in short-term memory. Psychophysiology, 53, 1823–1835.CrossRefPubMedGoogle Scholar
  7. Brocher, A., & Graf, T. (2017). Decision-related factors in pupil old/new effects: Attention, response execution, and false memory. Neuropsychologia, 102, 124–134.CrossRefPubMedGoogle Scholar
  8. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 1484–1525CrossRefPubMedPubMedCentralGoogle Scholar
  9. Crawford, B. H. (1936). The dependence of pupil size upon external light stimulus under static and variable conditions. Proceedings of the Royal Society: Series B, 121, 376–395.CrossRefGoogle Scholar
  10. Gabay, S., Pertzov, Y., & Henik, A. (2011). Orienting of attention, pupil size, and the norepinephrine system. Attention, Perception, & Psychophysics, 73, 123–129.CrossRefGoogle Scholar
  11. Granholm, E., Asarnow, R. F., Sarkin, A. J., & Dykes, K. L. (1996). Pupillary responses index cognitive resource limitations. Psychophysiology, 33, 457–461.CrossRefPubMedGoogle Scholar
  12. Granholm, E., & Verney, S. P. (2004). Pupillary responses and attentional allocation problems on the backward masking task in schizophrenia. International Journal of Psychophysiology, 52, 37–51.CrossRefPubMedGoogle Scholar
  13. Heaver, B., & Hutton, S. B. (2011). Keeping an eye on the truth? Pupil size changes associated with recognition memory. Memory, 19, 398–405.CrossRefPubMedGoogle Scholar
  14. Hüttermann, S., & Memmert, D. (2015). The influence of motivational and mood states on visual attention: A quantification of systematic differences and casual changes in subjects’ focus of attention. Cognition and Emotion, 29, 471–483.CrossRefPubMedGoogle Scholar
  15. Hüttermann, S., & Memmert, D. (2017). The attention window: A narrative review of limitations and opportunities influencing the focus of attention. Research Quarterly for Exercise and Sport, 88, 169–183.CrossRefPubMedGoogle Scholar
  16. Hüttermann, S., Memmert, D., & Simons, D. J. (2014). The size and shape of the attentional “spotlight” varies with differences in sports expertise. Journal of Experimental Psychology: Applied, 20, 147–157.PubMedGoogle Scholar
  17. Hüttermann, S., Memmert, D., Simons, D. J., & Bock, O. (2013). Fixation strategy influences the ability to focus attention on two spatially separate objects. PLoS ONE, 8, e65673.CrossRefPubMedPubMedCentralGoogle Scholar
  18. James, W. (1890). The principles of psychology. New York, NY: Henry Holt.CrossRefGoogle Scholar
  19. Kafkas, A., & Montaldi, D. (2011). Recognition memory strength is predicted by pupillary responses at encoding while fixation patterns distinguish recollection from familiarity. Quarterly Journal of Experimental Psychology, 64, 1971–1989.CrossRefGoogle Scholar
  20. Kafkas, A., & Montaldi, D. (2012). Familiarity and recollection produce distinct eye movement, pupil and medial temporal lobe responses when memory strength is matched. Neuropsychologia, 50, 3080–3093.CrossRefPubMedGoogle Scholar
  21. Kafkas, A., & Montaldi, D. (2015). The pupillary response discriminates between subjective and objective familiarity and novelty. Psychophysiology, 52, 1305–1316.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  23. Karatekin, C., Couperus, J. W., & Marcus, D. J. (2004). Attention allocation in the dual-task paradigm as measured through behavioral and psychophysiological responses. Psychophysiology, 41, 175–185.CrossRefPubMedGoogle Scholar
  24. Mathôt, S., Dalmaijer, E., Grainger, J., & Van der Stigchel, S. (2014). The pupillary light response reflects exogenous attention and inhibition of return. Journal of Vision, 14(14), 1–9. CrossRefGoogle Scholar
  25. Mathôt, S., Melmi, J.-B., van der Linden, L., & Van der Stigchel, S. (2016). The mind-writing pupil: A human–computer interface based on decoding of covert attention through pupillometry. PLoS ONE, 11, e0148805. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mathôt, S., van der Linden, L., Grainger, J., & Vitu, F. (2013). The pupillary light response reveals the focus of covert visual attention. PLoS ONE, 8, e78168. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mathôt, S., & Van der Stigchel, S. (2015). New light on the mind’s eye: The pupillary light response as active vision. Current Directions in Psychological Science, 24, 374–378CrossRefPubMedPubMedCentralGoogle Scholar
  28. Naber, M., Alvarez, G. A., & Nakayama, K. (2013). Tracking the allocation of attention using human pupillary oscillations. Frontiers in Psychology, 4, 919. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Papesh, M. H., Goldinger, S. D., & Hout, M. C. (2012). Memory strength and specificity revealed by pupillometry. International Journal of Psychophysiology, 83, 56–64.CrossRefPubMedGoogle Scholar
  30. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Piquado, T., Isaacowitz, D., & Wingfield, A. (2010). Pupillometry as a measure of cognitive effort in younger and older adults. Psychophysiology, 47, 560–569.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Posner, M. I. (1994). Attention: The mechanisms of consciousness. Proceedings of the National Academy of Sciences, 91, 7398–7403.CrossRefGoogle Scholar
  33. Richer, F., & Beatty, J. (1985), Pupillary dilations in movement preparation and execution. Psychophysiology, 22, 204–207.CrossRefPubMedGoogle Scholar
  34. Richer, F., Silverman, C., & Beatty, J. (1983). Response selection and initiation in speeded reactions: A pupillometric analysis. Journal of Experimental Psychology: Human Perception and Performance, 3, 360–370.Google Scholar
  35. Sirois, S., & Brisson, J. (2014). Pupillometry. Wiley Interdisciplinary Reviews: Cognitive Science, 5, 679–692.CrossRefPubMedGoogle Scholar
  36. Unsworth, N., & Robison, M. K. (2017). Pupillary correlates of covert shifts of attention during working memory maintenance. Attention, Perception, & Psychophysics, 79, 782–795. CrossRefGoogle Scholar
  37. Van Gerven, P. W. M., Paas, F., Van Merrienboer, J. J. G., & Schmidt, H. G. (2004). Memory load and the cognitive pupillary response in aging. Psychophysiology, 41, 167–174.CrossRefPubMedGoogle Scholar
  38. Wahn, B., Ferris, D. P., Hairston, W. D., & König, P. (2016). Pupil sizes scale with attentional load and task experience in a multiple object tracking task. PLoS ONE, 11, e168087:1–15. Google Scholar
  39. Zekveld, A. A., & Kramer, S. E. (2014). Cognitive processing load across a wide range of listening conditions: Insights from pupillometry. Psychophysiology, 51, 277–284.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Andreas Brocher
    • 1
    • 2
  • Raphael Harbecke
    • 3
  • Tim Graf
    • 1
    • 2
  • Daniel Memmert
    • 3
  • Stefanie Hüttermann
    • 3
  1. 1.CRC Prominence in LanguageKölnGermany
  2. 2.Institut für deutsche Sprache und Literatur I, Universität zu KölnKölnGermany
  3. 3.Institut für Trainingswissenschaft und SportinformatikDeutsche Sporthochschule KölnKölnGermany

Personalised recommendations