Network structure of the Wisconsin Schizotypy Scales–Short Forms: Examining psychometric network filtering approaches

  • Alexander P. Christensen
  • Yoed N. Kenett
  • Tomaso Aste
  • Paul J. Silvia
  • Thomas R. Kwapil


Schizotypy is a multidimensional construct that provides a useful framework for understanding the etiology, development, and risk for schizophrenia-spectrum disorders. Past research has applied traditional methods, such as factor analysis, to uncovering common dimensions of schizotypy. In the present study, we aimed to advance the construct of schizotypy, measured by the Wisconsin Schizotypy Scales–Short Forms (WSS-SF), beyond this general scope by applying two different psychometric network filtering approaches—the state-of-the-art approach (lasso), which has been employed in previous studies, and an alternative approach (information-filtering networks; IFNs). First, we applied both filtering approaches to two large, independent samples of WSS-SF data (ns = 5,831 and 2,171) and assessed each approach’s representation of the WSS-SF’s schizotypy construct. Both filtering approaches produced results similar to those from traditional methods, with the IFN approach producing results more consistent with previous theoretical interpretations of schizotypy. Then we evaluated how well both filtering approaches reproduced the global and local network characteristics of the two samples. We found that the IFN approach produced more consistent results for both global and local network characteristics. Finally, we sought to evaluate the predictability of the network centrality measures for each filtering approach, by determining the core, intermediate, and peripheral items on the WSS-SF and using them to predict interview reports of schizophrenia-spectrum symptoms. We found some similarities and differences in their effectiveness, with the IFN approach’s network structure providing better overall predictive distinctions. We discuss the implications of our findings for schizotypy and for psychometric network analysis more generally.


Schizotypy Network analysis Schizophrenia-spectrum disorders 

Supplementary material

13428_2018_1032_MOESM1_ESM.docx (42 kb)
ESM 1 (DOCX 42 kb)


  1. Aste, T., Di Matteo, T., & Hyde, S. (2005). Complex networks on hyperbolic surfaces. Physica A, 346, 20–26.CrossRefGoogle Scholar
  2. Aste, T., Gramatica, R., & Di Matteo, T. (2012). Exploring complex networks via topological embedding on surfaces. Physical Review E, 86, 036109.CrossRefGoogle Scholar
  3. Barabási, A.-L. (2016). Network science. Cambridge: Cambridge University Press.Google Scholar
  4. Barber, R. F., & Drton, M. (2015). High-dimensional Ising model selection with Bayesian information criteria. Electronic Journal of Statistics, 9, 567–607.CrossRefGoogle Scholar
  5. Barfuss, W., Massara, G. P., Di Matteo, T., & Aste, T. (2016). Parsimonious modeling with information filtering networks. Physical Review E, 94, 062306.CrossRefPubMedGoogle Scholar
  6. Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17, 348–360.CrossRefPubMedGoogle Scholar
  7. Barrantes-Vidal, N., Gross, G. M., Sheinbaum, T., Mitjavila, M., Ballespí, S., & Kwapil, T. R. (2013). Positive and negative schizotypy are associated with prodromal and schizophrenia-spectrum symptoms. Schizophrenia Research, 145, 50–55.CrossRefPubMedGoogle Scholar
  8. Barrat, A., Barthelemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex weighted networks. Proceedings of the National Academy of Sciences, 101, 3747–3752.CrossRefGoogle Scholar
  9. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175–308.CrossRefGoogle Scholar
  10. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2, 113–120.CrossRefGoogle Scholar
  11. Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29, 555–564.CrossRefGoogle Scholar
  12. Bonacich, P., & Lloyd, P. (2001). Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23, 191–201.CrossRefGoogle Scholar
  13. Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27, 55–71.CrossRefGoogle Scholar
  14. Borodkin, K., Kenett, Y. N., Faust, M., & Mashal, N. (2016). When pumpkin is closer to onion than to squash: The structure of the second language lexicon. Cognition, 156, 60–70.CrossRefPubMedGoogle Scholar
  15. Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16, 5–13.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.CrossRefPubMedGoogle Scholar
  17. Borsboom, D., Fried, E. I., Epskamp, S., Waldorp, L. J., van Borkulo, C. D., van der Maas, H. L. J., & Cramer, A. O. J. (2017). False alarm? A comprehensive reanalysis of “Evidence that psychopathology symptom networks have limited replicability” by Forbes, Wright, Markon, and Krueger (2017). Journal of Abnormal Psychology, 126, 989–999. doi: CrossRefPubMedGoogle Scholar
  18. Boschloo, L., Schoevers, R. A., van Borkulo, C. D., Borsboom, D., & Oldehinkel, A. J. (2016). The network structure of psychopathology in a community sample of preadolescents. Journal of Abnormal Psychology, 125, 599–606.CrossRefPubMedGoogle Scholar
  19. Bringmann, L. F., Lemmens, L. H. J. M., Huibers, M. J. H., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck Depression Inventory–II. Psychological Medicine, 45, 747–757.CrossRefPubMedGoogle Scholar
  20. Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., … Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8, e60188. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chapman, J. P., & Chapman, L. J. (1983). Reliability and the discrimination of normal and pathological groups. Journal of Nervous and Mental Disease, 171, 658–661.CrossRefPubMedGoogle Scholar
  22. Chapman, L. J., & Chapman, J. P. (1980). Scales for rating psychotic and psychotic-like experiences as continua. Schizophrenia Bulletin, 6, 476–489.CrossRefGoogle Scholar
  23. Chapman, L. J., Chapman, J. P., & Raulin, M. L. (1976). Scales for physical and social anhedonia. Journal of Abnormal Psychology, 85, 374–382.CrossRefPubMedGoogle Scholar
  24. Chapman, L. J., Chapman, J. P., & Raulin, M. L. (1978). Body-image aberration in schizophrenia. Journal of Abnormal Psychology, 87, 399–407.CrossRefPubMedGoogle Scholar
  25. Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95, 759–771.CrossRefGoogle Scholar
  26. Christensen, A.P. (2018). NetworkToolbox: Methods and measures for brain, cognitive, and psychometric network analysis (R package version 1.0.0). Available from
  27. Chun, C. A., Barrantes-Vidal, N., Sheinbaum, T., & Kwapil, T. R. (2017). Expression of schizophrenia-spectrum personality traits in daily life. Personality Disorders: Theory, Research, and Treatment, 8, 64–74.CrossRefGoogle Scholar
  28. Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2017). Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences doi:
  29. Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52, 281–302.CrossRefPubMedGoogle Scholar
  30. Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B, 76, 373–397.CrossRefGoogle Scholar
  31. Darroch, J. N., Lauritzen, S. L., & Speed, T. P. (1980). Markov fields and log-linear interaction models for contingency tables. Annals of Statistics, 8, 522–539.CrossRefGoogle Scholar
  32. De Schryver, M., Vindevogel, S., Rasmussen, A. E., & Cramer, A. O. J. (2015). Unpacking constructs: A network approach for studying war exposure, daily stressors and post-traumatic stress disorder. Frontiers in Psychology, 6, 1896:1–10. doi: Google Scholar
  33. Eckblad, M. L., & Chapman, L. J. (1983). Magical ideation as an indicator of schizotypy. Journal of Consulting and Clinical Psychology, 51, 215–225.CrossRefPubMedGoogle Scholar
  34. Eckblad, M. L., Chapman, L. J., Chapman, J. P., & Mishlove, M. (1982). The Revised Social Anhedonia Scale. Unpublished test.Google Scholar
  35. Endicott, J., Spitzer, R. L., Fleiss, J. L., & Cohen, J. (1976). The Global Assessment Scale: A procedure for measuring overall severity of psychiatric disturbance. Archives of General Psychiatry, 33, 766–771.CrossRefPubMedGoogle Scholar
  36. Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195–212. doi: CrossRefPubMedGoogle Scholar
  37. Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48, 1–18.CrossRefGoogle Scholar
  38. Epskamp, S., & Fried, E. I. (2016). A tutorial on regularized partial correlation networks. arXiv preprint. arXiv:1607.01367Google Scholar
  39. Epskamp, S., Kruis, J., & Marsman, M. (2017). Estimating psychopathological networks: Be careful what you wish for. PLoS ONE, 12, e0179891. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  40. Epskamp, S., Maris, G., Waldorp, L. J., & Borsboom, D. (in press). Network psychometrics. In P. Irwing, T. Booth, & D. J. Hughes (Eds.), The Wiley handbook of psychometric testing: A multidisciplinary reference on survey, scale and test development. New York: Wiley.Google Scholar
  41. Ettinger, U., Meyhöfer, I., Steffens, M., Wagner, M., & Koutsouleris, N. (2014). Genetics, cognition, and neurobiology of schizotypal personality: A review of the overlap with schizophrenia. Frontiers in Psychiatry, 5, 1–18.Google Scholar
  42. Forbes, M. K., Wright, A. G. C., Markon, K. E., & Krueger, R. F. (2017). Evidence that psychopathology symptom networks have limited replicability. Journal of Abnormal Psychology, 126, 969–988. doi:
  43. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.CrossRefGoogle Scholar
  44. Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12, 999–1020. doi: CrossRefPubMedGoogle Scholar
  45. Fried, E. I., Eidhof, M. B., Palic, S., Costantini, G., Huisman-van Dijk, H. M., Bockting, C. L. H., … Karstoft, K.-I. (2018). Replicability and generalizability of posttraumatic stress disorder (PTSD) networks: A cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clinical Psychological Science. Advance online publication. doi:
  46. Fried, E. I., van Borkulo, C. D., Cramer, A. O. J., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52, 1–10. doi:
  47. Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432–441.CrossRefPubMedGoogle Scholar
  48. Glass, G. V., & Hopkins, K. D. (1970). Statistical methods in education and psychology. Boston: Aliyn & Bacon.Google Scholar
  49. Gross, G. M., Mellin, J., Silvia, P. J., Barrantes-Vidal, N., & Kwapil, T. R. (2014). Comparing the factor structure of the Wisconsin Schizotypy Scales and the Schizotypal Personality Questionnaire. Personality Disorders: Theory, Research, and Treatment, 5, 397–405.CrossRefGoogle Scholar
  50. Gross, G. M., Silvia, P. J., Barrantes-Vidal, N., & Kwapil, T. R. (2012). Psychometric properties and validity of short forms of the Wisconsin Schizotypy Scales in two large samples. Schizophrenia Research, 134, 267–272.CrossRefPubMedGoogle Scholar
  51. Gross, G. M., Silvia, P. J., Barrantes-Vidal, N., & Kwapil, T. R. (2015). The dimensional structure of short forms of the Wisconsin Schizotypy Scales. Schizophrenia Research, 166, 80–85.CrossRefPubMedGoogle Scholar
  52. Guloksuz, S., Pries, L. K., & van Os, J. (2017). Application of network methods for understanding mental disorders: Pitfalls and promise. Psychological Medicine, 47, 2743–2752. doi: CrossRefPubMedGoogle Scholar
  53. Isvoranu, A.-M., van Borkulo, C. D., Boyette, L.-L., Wigman, J. T. W., Vinkers, C. H., & Borsboom, D. (2017). A network approach to psychosis: Pathways between childhood trauma and psychotic symptoms. Schizophrenia Bulletin, 1, 187–196.CrossRefGoogle Scholar
  54. Kane, M. J., Meier, M. E., Smeekens, B. A., Gross, G. M., Chun, C. A., Silvia, P. J., & Kwapil, T. R. (2016). Individual differences in the executive control of attention, memory, and thought, and their associations with schizotypy. Journal of Experimental Psychology: General, 145, 1017–1048. doi: CrossRefGoogle Scholar
  55. Karuza, E. A., Thompson-Schill, S. L., & Bassett, D. S. (2016). Local patterns to global architectures: Influences of network topology on human learning. Trends in Cognitive Sciences, 20, 629–640.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407:1–16. doi: Google Scholar
  57. Kenett, Y. N., Beaty, R. E., Silvia, P. J., Anaki, D., & Faust, M. (2016). Structure and flexibility: Investigating the relation between the structure of the mental lexicon, fluid intelligence, and creative achievement. Psychology of Aesthetics, Creativity, and the Arts, 10, 377–388.CrossRefGoogle Scholar
  58. Kenett, Y. N., Gold, R., & Faust, M. (2016). The hyper-modular associative mind: A computational analysis of associative responses of persons with Asperger Syndrome. Language and Speech, 59, 297–317.CrossRefGoogle Scholar
  59. Kenett, Y. N., Wechsler-Kashi, D., Kenett, D. Y., Schwartz, R. G., Ben Jacob, E., & Faust, M. (2013). Semantic organization in children with cochlear implants: Computational analysis of verbal fluency. Frontiers in Psychology, 4, 543:1–11. doi: Google Scholar
  60. Keshavan, M. S., Nasrallah, H. A., & Tandon, R. (2011). Moving ahead with the schizophrenia concept: From the elephant to the mouse. Schizophrenia Research, 127, 3–13.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. Cambridge: MIT Press.Google Scholar
  62. Kwapil, T. R., & Barrantes-Vidal, N. (2015). Schizotypy: Looking back and moving forward. Schizophrenia Bulletin, 41, S366–S373.CrossRefPubMedGoogle Scholar
  63. Kwapil, T. R., Barrantes-Vidal, N., & Silvia, P. J. (2008). The dimensional structure of the Wisconsin schizotypy scales: Factor identification and construct validity. Schizophrenia Bulletin, 34, 444–457.CrossRefPubMedGoogle Scholar
  64. Kwapil, T. R., Chapman, L. J., & Chapman, J. P. (1999). Validity and usefulness of the Wisconsin Manual for assessing psychotic-like experiences. Schizophrenia Bulletin, 25, 363–375.CrossRefPubMedGoogle Scholar
  65. Kwapil, T. R., & Dickerson, L. A. (2001) The assessment of negative symptoms in psychosis-prone young adults. Paper presented at the International Congress of Schizophrenia Research, Whistler.Google Scholar
  66. Kwapil, T. R., Gross, G. M., Silvia, P. J., Raulin, M. L., & Barrantes-Vidal, N. (in press). Development and psychometric properties of the Multidimensional Schizotypy Scale: A new measure for assessing positive, negative, and disorganized schizotypy. Schizophrenia Research. Advance online publication. doi:
  67. Kwapil, T. R., Ros-Morente, A., Silvia, P. J., & Barrantes-Vidal, N. (2012). Factor invariance of psychometric schizotypy in Spanish and American samples. Journal of Psychopathology and Behavioral Assessment, 34, 145–152.CrossRefGoogle Scholar
  68. Lauritzen, S., & Spiegelhalter, D. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society: Series B, 50, 157–224.Google Scholar
  69. Lauritzen, S. L., Speed, T. P., & Vijayan, K. (1984). Decomposable graphs and hypergraphs. Journal of the Australian Mathematical Society, 36, 12–29.CrossRefGoogle Scholar
  70. Lewandowski, K. E., Barrantes-Vidal, N., Nelson-Gray, R. O., Clancy, C., Kepley, H. O., & Kwapil, T. R. (2006). Anxiety and depression symptoms in psychometrically identified schizotypy. Schizophrenia Research, 83, 225–235.CrossRefPubMedGoogle Scholar
  71. Mantegna, R. N. (1999). Hierarchical structure in financial markets. European Physics Journal, 11, 193–197.CrossRefGoogle Scholar
  72. Markon, K. E., Krueger, R. F., & Watson, D. (2005). Delineating the structure of normal and abnormal personality: An integrative hierarchical approach. Journal of Personality and Social Psychology, 88, 139–157.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mason, O., Claridge, G., & Jackson, M. (1995). New scales for the assessment of schizotypy. Personality and Individual Differences, 18, 7–13.CrossRefGoogle Scholar
  74. Massara, G. P., Di Matteo, T., & Aste, T. (2016). Network filtering for big data: Triangulated maximally filtered graph. Journal of Complex Networks, 5, 161–178.Google Scholar
  75. McCrae, R. R. (2015). A more nuanced view of reliability: Specificity in the trait hierarchy. Personality and Social Psychology Review, 19, 97–112.CrossRefPubMedGoogle Scholar
  76. McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems a network approach to posttraumatic stress disorder. Clinical Psychological Science, 3, 836–849.CrossRefGoogle Scholar
  77. Meehl, P. E. (1962). Schizotaxia, schizotypy, schizophrenia. American Psychologist, 17, 827–838.CrossRefGoogle Scholar
  78. Molinelli, E. J., Korkut, A., Wang, W., Miller, M. L., Gauthier, N. P., Jing, X., … Solit, D. B. (2013). Perturbation biology: Inferring signaling networks in cellular systems. PLoS Computational Biology, 9, e1003290.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Musmeci, N., Aste, T., & Di Matteo, T. (2015). Relation between financial market structure and the real economy: Comparison between clustering methods. PLoS ONE, 10, e0116201. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  80. Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70, 056131.CrossRefGoogle Scholar
  81. Pearl, J. (2014). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Francisco: Morgan Kaufmann.Google Scholar
  82. Pozzi, F., Di Matteo, T., & Aste, T. (2013). Spread of risk across financial markets: Better to invest in the peripheries. Scientific Reports, 3, 1665:1–7.Google Scholar
  83. R Core Team (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from Google Scholar
  84. Raine, A. (1991). The SPQ: A scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17, 555–564.CrossRefPubMedGoogle Scholar
  85. Raine, A., & Benishay, D. (1995). The SPQ-B: A brief screening instrument for schizotypal personality disorder. Journal of Personality Disorders, 9, 346–355.CrossRefGoogle Scholar
  86. Ravikumar, P., Wainwright, M. J., & Lafferty, J. D. (2010). High-dimensional Ising model selection using ℓ1-regularized logistic regression. Annals of Statistics, 38, 1287–1319.CrossRefGoogle Scholar
  87. Ravikumar, P., Wainwright, M. J., Raskutti, G., & Yu, B. (2011). High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence. Electronic Journal of Statistics, 5, 935–980.CrossRefGoogle Scholar
  88. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.CrossRefPubMedGoogle Scholar
  89. Sahakyan, L., & Kwapil, T. R. (2016). Positive schizotypy and negative schizotypy are associated with differential patterns of episodic memory impairment. Schizophrenia Research: Cognition, 5, 35–40.CrossRefGoogle Scholar
  90. Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31, 43–53.CrossRefGoogle Scholar
  91. Sokal, R. R., & Rohlf, F. J. (1995). Biometry. New York: WH Freeman.Google Scholar
  92. Song, W.-M., Di Matteo, T., & Aste, T. (2011). Nested hierarchies in planar graphs. Discrete Applied Mathematics, 159, 2135–2146.CrossRefGoogle Scholar
  93. Song, W.-M., Di Matteo, T., & Aste, T. (2012). Hierarchical information clustering by means of topologically embedded graphs. PLoS ONE, 7, e31929. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  94. Spiegelhalter, D. J. (1987). Coherent evidence propagation in expert systems. Statistician, 201–210.Google Scholar
  95. Stam, C. J., Tewarie, P., Van Dellen, E., van Straaten, E. C. W., Hillebrand, A., & Van Mieghem, P. (2014). The trees and the forest: Characterization of complex brain networks with minimum spanning trees. International Journal of Psychophysiology, 92, 129–138.CrossRefPubMedGoogle Scholar
  96. Tewarie, P., van Dellen, E., Hillebrand, A., & Stam, C. J. (2015). The minimum spanning tree: An unbiased method for brain network analysis. NeuroImage, 104, 177–188.CrossRefPubMedGoogle Scholar
  97. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 267–288.Google Scholar
  98. Tumminello, M., Aste, T., Di Matteo, T., & Mantegna, R. N. (2005). A tool for filtering information in complex systems. Proceedings of the National Academy of Sciences, 102, 10421–10426.CrossRefGoogle Scholar
  99. Tumminello, M., Coronnello, C., Lillo, F., Micciche, S., & Mantegna, R. N. (2007). Spanning trees and bootstrap reliability estimation in correlation-based networks. International Journal of Bifurcation and Chaos, 17, 2319–2329.CrossRefGoogle Scholar
  100. van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldorp, L. J. (2014). A new method for constructing networks from binary data. Scientific Reports, 4, 5918:1–10.Google Scholar
  101. van Borkulo, C. D., Boschloo, L., Borsboom, D., Penninx, B. W. J. H., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA Psychiatry, 72, 1219–1226.CrossRefPubMedGoogle Scholar
  102. van Dellen, E., Bohlken, M. M., Draaisma, L., Tewarie, P. K., van Lutterveld, R., Mandl, R., Stam, C. J., & Sommer, I. E. (2015). Structural brain network disturbances in the psychosis spectrum. Schizophrenia Bulletin, 42, 782–789.CrossRefPubMedPubMedCentralGoogle Scholar
  103. van Wijk, B. C. M., Stam, C. J., & Daffertshofer, A. (2010). Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE, 5, e13701. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wichers, M., Wigman, J. T. W., Bringmann, L. F., & de Jonge, P. (2017). Mental disorders as networks: Some cautionary reflections on a promising approach. Social Psychiatry and Psychiatric Epidemiology, 52, 143–145.CrossRefPubMedGoogle Scholar
  105. Winterstein, B. P., Silvia, P. J., Kwapil, T. R., Kaufman, J. C., Reiter-Palmon, R., & Wigert, B. (2011). Brief assessment of schizotypy: Developing short forms of the Wisconsin Schizotypy Scales. Personality and Individual Differences, 51, 920–924.CrossRefGoogle Scholar
  106. World Health Organization. (1995). International personality disorders examination. Geneva: WHO.Google Scholar
  107. Wuthrich, V. M., & Bates, T. C. (2006). Confirmatory factor analysis of the three-factor structure of the schizotypal personality questionnaire and Chapman schizotypy scales. Journal of Personality Assessment, 87, 292–304.CrossRefPubMedGoogle Scholar
  108. Yu, M., Hillebrand, A., Tewarie, P., Meier, J., van Dijk, B., Van Mieghem, P., & Stam, C. J. (2015). Hierarchical clustering in minimum spanning trees. Chaos, 25, 023107.CrossRefPubMedGoogle Scholar
  109. Zhou, Y. (2011). Structure learning of probabilistic graphical models: A comprehensive survey. arXiv preprint. arXiv:1111.6925Google Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of North Carolina at GreensboroGreensboroUSA
  2. 2.Department of PsychologyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Computer ScienceUniversity College LondonLondonUK
  4. 4.Department of PsychologyUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations