Behavior Research Methods

, Volume 47, Issue 3, pp 813–825 | Cite as

Sensory experience ratings (SERs) for 1,659 French words: Relationships with other psycholinguistic variables and visual word recognition

  • Patrick Bonin
  • Alain Méot
  • Ludovic Ferrand
  • Aurélia Bugaïska


We collected sensory experience ratings (SERs) for 1,659 French words in adults. Sensory experience for words is a recently introduced variable that corresponds to the degree to which words elicit sensory and perceptual experiences (Juhasz & Yap Behavior Research Methods, 45, 160–168, 2013; Juhasz, Yap, Dicke, Taylor, & Gullick Quarterly Journal of Experimental Psychology, 64, 1683–1691, 2011). The relationships of the sensory experience norms with other psycholinguistic variables (e.g., imageability and age of acquisition) were analyzed. We also investigated the degree to which SER predicted performance in visual word recognition tasks (lexical decision, word naming, and progressive demasking). The analyses indicated that SER reliably predicted response times in lexical decision, but not in word naming or progressive demasking. The findings are discussed in relation to the status of SER, the role of semantic code activation in visual word recognition, and the embodied view of cognition.


Sensory experience ratings (SERs) Semantic richness Visual word recognition Grounded cognition 


Author note

The authors thank Mélanie Provost for her help in the collection of the data. The authors also thank Melvin Yap, Barbara Juhasz, Jon Andoni Duñabeitia, and an anonymous reviewer for constructive reviews on a previous version of the manuscript. This work was supported by a grant from Institut Universitaire de France to the first author, and by a grant from the Conseil Régional de Bourgogne to the last author.

Supplementary material

13428_2014_503_MOESM1_ESM.xlsx (69 kb)
ESM 1 (XLSX 69 kb)


  1. Amsel, B. D., Urbach, T. P., & Kutas, M. (2012). Perceptual and motor attribute ratings for 559 object concepts. Behavior Research Methods, 44, 1028–1041. doi: 10.3758/s13428-012-0215-z PubMedCentralCrossRefPubMedGoogle Scholar
  2. Balota, D. A., & Chumbley, J. I. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. Journal of Experimental Psychology: Human Perception and Performance, 10, 340–357. doi: 10.1037/0096-1523.10.3.340 PubMedGoogle Scholar
  3. Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. J. (2004). Visual word recognition for single-syllable words. Journal of Experimental Psychology: General, 133, 283–316. doi: 10.1037/0096-3445.133.2.283 CrossRefGoogle Scholar
  4. Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftus, B., & Treiman, R. (2007). The English Lexicon Project. Behavior Research Methods, 39, 445–459. doi: 10.3758/BF03193014 CrossRefPubMedGoogle Scholar
  5. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–609. doi: 10.1017/S0140525X99002149. disc. 609–600.PubMedGoogle Scholar
  6. Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. de Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols and embodiment: Debates on meaning and cognition (pp. 245–283). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  7. Barsalou, L. W., Simmons, W. K., Barbey, A., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7, 84–91. doi: 10.1016/S1364-6613(02)00029-3 CrossRefPubMedGoogle Scholar
  8. Bennett, S. D. R., Burnett, A. N., Siakaluk, P. D., & Pexman, P. M. (2011). Imageability and body–object interaction ratings for 599 multisyllabic nouns. Behavior Research Methods, 43, 1100–1109. doi: 10.3758/s13428-011-0117-5 CrossRefPubMedGoogle Scholar
  9. Bonin, P., Barry, C., Méot, A., & Chalard, M. (2004). The influence of age of acquisition in word reading and other tasks: A never ending story? Journal of Memory and Language, 50, 456–476. doi: 10.1016/j.jml.2004.02.001 CrossRefGoogle Scholar
  10. Bonin, P., Guillemard-Tsaparina, D., & Méot, A. (2013). Determinants of naming latencies, object comprehension times, and new norms for the Russian standardized set of the colorized version of the Snodgrass and Vanderwart pictures. Behavior Research Methods, 45, 731–745. doi: 10.3758/s13428-012-0279-9 CrossRefPubMedGoogle Scholar
  11. Bonin, P., Méot, A., Ferrand, L., & Roux, S. (2011). L’imageabilité: Normes et relation avec d’autres variables psycholinguistiques. L'Année Psychologique, 111, 327–357. doi: 10.4074/S0003503311002041 CrossRefGoogle Scholar
  12. Bonin, P., Méot, A., Mermillod, M., & Ferrand, L. (2009). The effects of age of acquisition and frequency trajectory on object naming: Comments on Perez (2007). Quarterly Journal of Experimental Psychology, 62, 1132–1140.CrossRefGoogle Scholar
  13. Brysbaert, M., Van Wijnendaele, I., & De Deyne, S. (2000). Age-of-acquisition effects in semantic processing tasks. Acta Psychologica, 104, 215–226. doi: 10.1016/S0001-6918(00)00021-4 CrossRefPubMedGoogle Scholar
  14. Chumbley, J. I., & Balota, D. A. (1984). A word’s meaning affects the decision in lexical decision. Memory & Cognition, 12, 590–606. doi: 10.3758/BF03213348 CrossRefGoogle Scholar
  15. Coltheart, M., Davelaar, E., Jonasson, J. T., & Besner, D. (1977). Access to the internal lexicon. In S. Dornic (Ed.), Attention and performance VI (pp. 535–555). Hillsdale, NJ: Erlbaum.Google Scholar
  16. Evans, G. A. L., Lambon Ralph, M. A., & Woollams, A. M. (2012). What’s in a word. A parametric study of semantic influences on visual word recognition. Psychonomic Bulletin & Review, 19, 325–331. doi: 10.3758/s13423-011-0213-7 CrossRefGoogle Scholar
  17. Fairhall, S. L., & Caramazza, A. (2013). Brain regions that represent amodal conceptual knowledge. Journal of Neuroscience, 33, 10552–10558.CrossRefPubMedGoogle Scholar
  18. Ferrand, L., Bonin, P., Méot, A., Augustinova, M., New, B., Pallier, C., & Brysbaert, M. (2008). Age-of-acquisition and subjective frequency estimates for all generally known monosyllabic French words and their relation with other psycholinguistic variables. Behavior Research Methods, 40, 1049–1054. doi: 10.3758/BRM.40.4.1049 CrossRefPubMedGoogle Scholar
  19. Ferrand, L., Brysbaert, M., Keuleers, E., New, B., Bonin, P., Méot, A., … Pallier, C. (2011). Comparing word processing times in naming, lexical decision, and progressive demasking: Evidence from Chronolex. Frontiers in Psychology, 2, 306. doi: 10.3389/fpsyg.2011.00306
  20. Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., … Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42, 488–496. doi: 10.3758/BRM.42.2.488
  21. Gonzalez, J., Barros-Loscertales, A., Pulvermüller, F., Meseguer, V., Sanjuán, A., Belloch, V., & Ávila, C. (2006). Reading cinnamon activates olfactory brain regions. NeuroImage, 32, 906–912. doi: 10.1016/j.neuroimage.2006.03.037 CrossRefPubMedGoogle Scholar
  22. Hargreaves, I. S., & Pexman, P. M. (2014). Get rich quick: The signal to respond procedure reveals the time course of semantic richness effects during visual word recognition. Cognition, 131, 216–242.CrossRefPubMedGoogle Scholar
  23. Hauk, O., & Pulvermüller, F. (2004). Neurophysiological distinction of action words in the fronto-central cortex. Human Brain Mapping, 21, 191–201. doi: 10.1002/hbm.10157 CrossRefPubMedGoogle Scholar
  24. Johnston, R. A., & Barry, C. (2006). Age of acquisition and lexical processing. Visual Cognition, 13, 789–845. doi: 10.1080/13506280544000066 CrossRefGoogle Scholar
  25. Juhasz, B. J., & Yap, M. J. (2013). Sensory experience ratings for over 5,000 mono- and disyllabic words. Behavior Research Methods, 45, 160–168. doi: 10.3758/s13428-012-0242-9 CrossRefPubMedGoogle Scholar
  26. Juhasz, B. J., Yap, M. J., Dicke, J., Taylor, S. C., & Gullick, M. M. (2011). Tangible words are recognized faster: The grounding of meaning in sensory and perceptual systems. Quarterly Journal of Experimental Psychology, 64, 1683–1691. doi: 10.1080/17470218.2011.605150 CrossRefGoogle Scholar
  27. Kang, S. H. K., Yap, M. J., Tse, C.-S., & Kurby, C. A. (2011). Semantic size does not matter: “Bigger” words are not recognized faster. Quarterly Journal of Experimental Psychology, 64, 1041–1047.CrossRefGoogle Scholar
  28. Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48, 805–825. doi: 10.1016/j.cortex.2011.04.006 CrossRefPubMedGoogle Scholar
  29. Kuperman, V. (2013). Accentuate the positive: Diagnostics of semantic access in English compounds. Frontiers in Language Sciences, 4(203), 1–10. doi: 10.3389/fpsyg.2013.00203 Google Scholar
  30. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44, 978–990. doi: 10.3758/s13428-012-0210-4 CrossRefPubMedGoogle Scholar
  31. Lynott, D., & Connell, L. (2013). Modality exclusivity norms for 400 nouns: The relationship between perceptual experience and surface word form. Behavior Research Methods, 45, 516–526. doi: 10.3758/s13428-012-0267-0 CrossRefPubMedGoogle Scholar
  32. Mädebach, A., Jescheniak, J. D., Oppermann, F., & Schriefers, H. (2011). Ease of processing constrains the activation flow in the conceptual–lexical system during speech planning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 649–660.PubMedGoogle Scholar
  33. Morrison, C. M., & Ellis, A. W. (2000). Real age of acquisition effects in word naming and lexical decision. British Journal of Psychology, 91, 167–180.CrossRefPubMedGoogle Scholar
  34. New, B., Brysbaert, M., Véronis, J., & Pallier, C. (2007). The use of film subtitles to estimate word frequencies. Applied Psycholinguistics, 28, 661–677. doi: 10.1017/S014271640707035X CrossRefGoogle Scholar
  35. Pexman, P. M., Hargreaves, I. S., Siakaluk, P. D., Bodner, G. E., & Pope, J. (2008). There are many ways to be rich: Effects of three measures of semantic richness on visual word recognition. Psychonomic Bulletin & Review, 15, 161–167. doi: 10.3758/PBR.15.1.161 CrossRefGoogle Scholar
  36. Plaut, D. C., & Shallice, T. (1993). Deep dyslexia: A case study of connectionist neuropsychology. Cognitive Neuropsychology, 10, 377–500. doi: 10.1080/02643299308253469 CrossRefGoogle Scholar
  37. Roux, S., Bonin, P., & Kandel, S. (2014). The “BIG BIRD” of the “YELLOW YOUNG” man: Do nontarget properties cascade? Quarterly Journal of Experimental Psychology, 67, 763–784.CrossRefGoogle Scholar
  38. Schock, J., Cortese, M. J., & Khanna, M. M. (2012). Imageability estimates for 3,000 disyllabic words. Behavior Research Methods, 44, 374–379. doi: 10.3758/s13428-011-0162-0 CrossRefPubMedGoogle Scholar
  39. Sereno, S. C., O’Donnell, P. J., & Sereno, M. E. (2009). Size matters: Bigger is faster. Quarterly Journal of Experimental Psychology, 62, 1115–1122.CrossRefGoogle Scholar
  40. Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6, 174–215. doi: 10.1037/0278-7393.6.2.174 Google Scholar
  41. Tillotson, S. M., Siakaluk, P. D., & Pexman, P. M. (2008). Body–object interaction ratings for 1,618 monosyllabic nouns. Behavior Research Methods, 40, 1075–1078. doi: 10.3758/BRM.40.4.1075 CrossRefPubMedGoogle Scholar
  42. Tousignant, C., & Pexman, P. M. (2012). Flexible recruitment of semantic richness: Context modulates body–object interaction effects in lexical–semantic processing. Frontiers in Human Neuroscience, 6, 53. doi: 10.3389/fnhum.2012.00053 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Treiman, R., Mullennix, J., Bijeljac-Babic, R., & Richmond-Welty, E. D. (1995). The special role of rimes in the description, use, and acquisition of English orthography. Journal of Experimental Psychology: General, 124, 107–136. doi: 10.1037/0096-3445.124.2.107 CrossRefGoogle Scholar
  44. Vannuscorps, G., Andres, M., & Pillon, A. (2014). Is motor knowledge part and parcel of the concepts of manipulable artifacts? Clues from a case of upper limb aplasia. Brain and Cognition, 84, 132–140.CrossRefPubMedGoogle Scholar
  45. Yap, M. J., Pexman, P. M., Wellsby, M., Hargreaves, I. S., & Huff, M. J. (2012). An abundance of riches: Cross-task comparisons of semantic richness effects in visual word recognition. Frontiers in Human Neuroscience, 6, 72. doi: 10.3389/fnhum.2012.00072 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Yap, M. J., Tan, S. E., Pexman, P. M., & Hargreaves, I. S. (2011). Is more always better? Effects of semantic richness on lexical decision, speeded pronunciation, and semantic classification. Psychonomic Bulletin & Review, 18, 742–750. doi: 10.3758/s13423-011-0092-y CrossRefGoogle Scholar
  47. Zdrazilova, L., & Pexman, P. M. (2013). Grasping the invisible: Semantic processing of abstract words. Psychonomic Bulletin & Review, 20, 1312–1318. doi: 10.3758/s13423-013-0452-x CrossRefGoogle Scholar
  48. Zevin, J. D., & Seidenberg, M. S. (2002). Age of acquisition effects in word reading and other tasks. Journal of Memory and Language, 47, 1–29. doi: 10.1006/jmla.2001.2834 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Patrick Bonin
    • 1
    • 2
    • 4
  • Alain Méot
    • 3
  • Ludovic Ferrand
    • 3
  • Aurélia Bugaïska
    • 2
  1. 1.Institut Universitaire de FranceParisFrance
  2. 2.University of Bourgogne, LEAD-CNRSDijonFrance
  3. 3.University Blaise Pascal, LAPSCO-CNRSClermont-FerrandFrance
  4. 4.Pôle AAFE, Esplanade ErasmeLEAD-CNRS (UMR 5022), University of BourgogneDijonFrance

Personalised recommendations