Behavior Research Methods

, Volume 47, Issue 3, pp 744–755 | Cite as

New frontiers in the rubber hand experiment: when a robotic hand becomes one’s own

  • Emilie A. Caspar
  • Albert De Beir
  • Pedro A. Magalhaes De Saldanha Da Gama
  • Florence Yernaux
  • Axel Cleeremans
  • Bram Vanderborght
Article

Abstract

The rubber hand illusion is an experimental paradigm in which participants consider a fake hand to be part of their body. This paradigm has been used in many domains of psychology (i.e., research on pain, body ownership, agency) and is of clinical importance. The classic rubber hand paradigm nevertheless suffers from limitations, such as the absence of active motion or the reliance on approximate measurements, which makes strict experimental conditions difficult to obtain. Here, we report on the development of a novel technology—a robotic, user- and computer-controllable hand—that addresses many of the limitations associated with the classic rubber hand paradigm. Because participants can actively control the robotic hand, the device affords higher realism and authenticity. Our robotic hand has a comparatively low cost and opens up novel and innovative methods. In order to validate the robotic hand, we have carried out three experiments. The first two studies were based on previous research using the rubber hand, while the third was specific to the robotic hand. We measured both sense of agency and ownership. Overall, results show that participants experienced a “robotic hand illusion” in the baseline conditions. Furthermore, we also replicated previous results about agency and ownership.

Keywords

Rubber hand illusion Volition Self-awareness Sense of ownership Sense of agency Robotic hand 

Notes

Acknowledgments

This work was funded by the FRS-F.N.R.S. (Fonds de la Recherche Scientifique) and by Grant P7/33 from the Belgian Science Policy Office (Interuniversity Poles of Attraction Program). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank the editor and the two anonymous reviewers for commenting on earlier versions of the manuscript. We also thank Jéromy Hrabovecky for his help in the proof of the manual.

Supplementary material

ESM 1

(MOV 23501 kb)

13428_2014_498_MOESM2_ESM.pdf (1.6 mb)
ESM 2(PDF 1617 kb)

References

  1. Aldhous, P. (2009). Illusion could give prosthetics a sense of touch. New Scientist, 201(2692), 15.CrossRefGoogle Scholar
  2. Allison, B. Z., Wolpaw, E. W., & Wolpaw, J. R. (2007). Brain computer interface systems: Progress and prospects. British Review of Medical Devices, 4(4), 463–474.CrossRefGoogle Scholar
  3. Armel, K. C., & Ramachandran, V. S. (2003). Projecting sensations to external objects: Evidence from skin conductance response. Proceedings of the Royal Society of London: Biological, 270, 1499–1506.CrossRefGoogle Scholar
  4. Aspell, J., Lenggenhager, B., & Blanke, O. (2009). Keeping in touch with one’s self: Multisensory mechanisms of self-consciousness. PLoS ONE, 4, e6488. doi:10.1371/journal.pone.0006488 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Barber, T. X., & Silver, M. J. (1968). Fact, fiction, and the experimenter bias effect. Psychological Bulletin, 70, 1–29. doi:10.1037/h0026724 CrossRefGoogle Scholar
  6. Barnsley, N., McAuley, J., Mohan, R., Dey, A., Thomas, P., & Moseley, G. (2011). The rubber hand illusion increases histamine reactivity in the real arm. Current Biology, 21(23), R945–R946.CrossRefPubMedGoogle Scholar
  7. Beckerle, P., Christ, O., Wojtusch, J., Schuy, J., Wolff, K., Rinderknecht, S. .… & von Stryk, O. (2012). Design and control of a robot for the assessment of psychological factors in prosthetic development. Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on IEEE, pp. 1485–1490.Google Scholar
  8. Bicchi, A. (2000). Hand for dexterous manipulation and robust grasping: A difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.CrossRefGoogle Scholar
  9. Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391, 756.CrossRefPubMedGoogle Scholar
  10. Costantini, M., & Haggard, P. (2007). The rubber hand illusion: Sensitivity and reference frame for body ownership. Consciousness and Cognition, 16(2), 229–240.CrossRefPubMedGoogle Scholar
  11. Cherelle, P., Grosu, V., Matthys, A., Vanderborght, B., & Lefeber, D. (2013). Design and validation of the ankle mimicking prosthetic (amp-) foot 2.0. IEEE Transactions on Neural Systems and Rehabilitation Engineering.Google Scholar
  12. Christ, O., Wojtusch, J., Beckerle, P., Wolff, K., Vogt, J., von Stryk, O., & Rinderknecht, S. (2012). Prosthesis-user-in-the-loop: User-centered design parameters and visual simulation. Engineering in Medicine and Biology Society (EMBC), Annual International Conference of the IEEE. IEEE, 2012, pp. 1929–1932.Google Scholar
  13. Davis, S., Tsagarakis, N.G. & Caldwell, D.G. (2008). The initial design and manufacturing process of a low cost hand for the robot iCub. IEEE-RAS International Conference on Humanoid Robots. Google Scholar
  14. Doyen, S., Klein, O., Pichon, C., & Cleeremans, A. (2012). Behavioral priming: It is all in the brain, but whose brain? PLoS ONE, 7(1), e29081. doi:10.1371/journal.pone.0029081 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Dummer, Picot-Annand, Neal, & Moore. (2009). Movement and the rubber hand illusion. Perception, 38, 271–280.CrossRefPubMedGoogle Scholar
  16. Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). ‘That’s my hand!’ Activity in the premotor cortex reflects feeling of ownership of a limb. Science, 305, 875–877.CrossRefPubMedGoogle Scholar
  17. Ehrsson, H., Rosén, B., Stockselius, A., Ragnö, C., Köhler, P., & Lundborg, G. (2008). Upper limb amputees can be induced to experience a rubber hand as their own. Brain, 131, 2443–3452.CrossRefGoogle Scholar
  18. Gallagher, S. (2000). Philosophical conceptions of the self: Implications for cognitive science. Trends in Cognitive Sciences, 4(1), 14–21.CrossRefPubMedGoogle Scholar
  19. Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D. (2013) Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype. IEEE International Conference on Rehabilitation Robotics :6650352. doi: 10.1109/ICORR.2013.6650352
  20. Graziano, M. S., Cooke, D. F., & Taylor, C. S. (2000). Coding the location of the arm by sight. Science, 290, 1782–1786.CrossRefPubMedGoogle Scholar
  21. Grebenstein, M., Albu-Schaffer, A., Bahls, T., Chalon, M., Eiberger, O., Friedl, W., … & Hirzinger, G. (2011). The DLR hand arm system. Robotics and Automation (ICRA), IEEE International Conference, pp. 3175–3182.Google Scholar
  22. Guterstam, A., Gentile, G., & Erhsson, H. H. (2013). The invisible hand illusion: Multisensory Integration leads to the embodiment of a discrete volume of empty space. Journal of Cognitive Neuroscience, 25(7), 1078–1099.CrossRefPubMedGoogle Scholar
  23. Haans, A., IJsselsteijn, W. A., & de Kort, Y. A. W. (2008). The effect of similarities in skin texture and hand shape on perceived ownership of a fake limb. Body Image: An International Journal of Research, 5, 389–394.CrossRefGoogle Scholar
  24. Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5(4), 382–385. doi:10.1038/nn827 CrossRefPubMedGoogle Scholar
  25. Haselager, P. (2013). Did I do that? Brain–computer interfacing and the sense of agency. Minds and Machines, 23(3), 405–418.CrossRefGoogle Scholar
  26. Holle, H., McLatchie, N., Maurer, S., & Ward, J. (2011). Proprioceptive drift without illusions of ownership for rotated hands in the ‘rubber hand illusion’ paradigm. Cognitive Neuroscience, 3, 1–8.Google Scholar
  27. Ionta, S., Sforza, A., Funato, M., & Blanke, O. (2013). Anatomically plausible illusory posture affects mental rotation of body parts’. Cognitive, Affective, & Behavioral Neuroscience, 13(1), 197–209.CrossRefGoogle Scholar
  28. Kalckert, A., & Ehrsson, H. H. (2012). Moving a rubber hand that feels like your own: A dissociation of ownership and agency. Frontiers in Human Neuroscience, 6, 1–14.CrossRefGoogle Scholar
  29. Kuznetsov, S., & Paulos, E. (2010). Rise of the expert amateur: DIY projects, communities, and cultures. Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, pp. 295–304.Google Scholar
  30. Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., … & Donoghue, J.P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485, 372–375.Google Scholar
  31. Lloyd, D. M. (2007). Spatial limits on referred touch to an alien limb may reflect boundaries of visuo- tactile peripersonal space surrounding the hand. Brain & Cognition, 64, 104–109.CrossRefGoogle Scholar
  32. Longo, M. R., Schüür, F., Kammers, M. P. M., Tsakiris, M., & Haggard, P. (2008). What is embodiment? A psychometric approach. Cognition, 107, 978–998.CrossRefPubMedGoogle Scholar
  33. Makin, T. R., Holmes, N. P., & Zohary, E. (2007). Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. Journal of Neuroscience, 27, 731–740.CrossRefPubMedGoogle Scholar
  34. Makin, T. R., Holmes, N. P., & Ehrsson, H. H. (2008). On the other hand: Dummy hands and peripersonal space. Behavioural Brain Research, 191, 1–10.CrossRefPubMedGoogle Scholar
  35. Melchiorri, C., Palli, G., Berselli, G., & Vassura, G. (2013). Development of the UB Hand IV. IEEE Robotics & Automation Magazine 1070, no. 9932/13.Google Scholar
  36. Moseley, G. L., Olthof, N., Venema, A., Don, S., Wijers, M., Gallace, A., & Spence, C. (2008). Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proceedings of the National Academy of Sciences of the United States of America, 105, 13169–13173. doi:10.1073/pnas.0803768105 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Pratichizzo, D., Malvezzi, M. & Bicchi, A. (2010). On motion and force controllability of grasping hands with postural synergies. Proceedings of Robotics: Science and Systems.Google Scholar
  38. Ramakonar, H., Franz, E. A., & Lind, C. R. P. (2011). The rubber hand illusion and its application to clinical neuroscience. Journal of Clinical Neuroscience, 18(2), 1596–1601.CrossRefPubMedGoogle Scholar
  39. Riemer, M., Kleinböhl, D., Hölzl, R., & Trojan, J. (2013). Action and perception in the rubber hand illusion. Experimental Brain Research, 229(3), 383–393.CrossRefPubMedGoogle Scholar
  40. Rohde, M., Di Luca, M., & Ernst, M. O. (2011). The rubber hand illusion: Feeling of ownership and proprioceptive drift do not go hand in hand. PLoS ONE, 6(6), e21659.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Roessler, J., & Eilan, N. (Eds.). (2003). Agency and self-awareness. Oxford: Oxford University Press.Google Scholar
  42. Rosenthal, R., & Lawson, R. (1964). A longitudinal study of the effects of experimenter bias on the operant learning laboratory rats. Journal of Psychiatric Research, 2(2), 61–71.Google Scholar
  43. Rosenthal, R., Gordon, W. P., & Kermit, L. F. (1962). Experimenter bias, anxiety, and social desirability. Perceptual and Motor Skill, 15(1), 73–74.CrossRefGoogle Scholar
  44. Shimada, S., Fukuda, K., & Hiraki, K. (2009). Rubber hand illusion under delayed visual feedback. PLoS ONE, 4(7), e6185. doi:10.1371/journal.pone.0006185 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Townsend, W. (2000). Barrett hand grasper. Journal of Industrial Robots, 27(3), 181–188.CrossRefGoogle Scholar
  46. Troffer, S. A., & Tart, C. T. (1964). Experimenter bias in hypnotist performance. Science, 145, 1330–1331. doi:10.1126/science.145.3638.1330 CrossRefPubMedGoogle Scholar
  47. Tsakiris, M., & Haggard, P. (2003). Awareness of somatic events associated with a voluntary action. Experimental Brain Research, 149, 439–446.PubMedGoogle Scholar
  48. Tsakiris, M., Haggard, P., Franck, N., Mainy, N., & Sirigu, A. (2005a). A specific role for efferent information in self-recognition. Cognition, 96(3), 215–231.CrossRefPubMedGoogle Scholar
  49. Tsakiris, M., Prabhu, G., & Haggard, P. (2005b). Having a body versus moving your body: How agency structures body-ownership. Consciousness and Cognition, 15(2), 423–432.CrossRefPubMedGoogle Scholar
  50. Tsakiris, M., & Haggard, P. (2005). The rubber hand illusion revisited: Visuotactile integration and self- attribution. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 80–91.PubMedGoogle Scholar
  51. Tsakiris, M., Prabhu, G., & Haggard, P. (2006). Having a body versus moving your body: How agency structures body-ownership. Consciousness & Cognition, 15(2), 423–432.CrossRefGoogle Scholar
  52. Tsakiris, M., Hesse, M., Boy, C., Haggard, P., & Fink, G. R. (2007a). Neural correlates of body-ownership: A sensory network for bodily self-consciousness. Cerebral Cortex, 17, 2235–2244.CrossRefPubMedGoogle Scholar
  53. Tsakiris, M., Schütz-Bosbach, S., & Gallagher, S. (2007b). On agency and body-ownership: Phenomenological and neurocognitive reflections. Consciousness & Cognition, 16(3), 645–660.CrossRefGoogle Scholar
  54. Tsakiris, M. (2010). My body in the brain: A neurocognitive model of body-ownership. Neuropsychologia, 48, 703–712.CrossRefPubMedGoogle Scholar
  55. Tsakiris, M., Longo, M. R., & Haggard, P. (2010). Having a body versus moving your body: Neural signatures of agency and body-ownership. Neuropsychologia, 48(9), 2740–2749. doi:10.1016/j.neuropsychologia.2010.05.021 CrossRefPubMedGoogle Scholar
  56. Tsakiris, M., Tajadura-Jiménez, A., & Costantini, M. (2011). Just a heartbeat away from one’s body: Interoceptive sensitivity predicts malleability of body-representations. Proceedings of the Royal Society B: Biological Science, 278(1717), 2470–2476. doi:10.1098/rspb.2010.2547 CrossRefGoogle Scholar
  57. Tuffield, P., & Elias, H. (2003). The shadow robot mimics human actions. Industrial Robot: An International Journal, 30(1), 56–60.CrossRefGoogle Scholar
  58. van den Bos, E., & Jeannerod, M. (2002). Sense of body and sense of action both contribute to self-recognition. Cognition, 85, 177–187.CrossRefPubMedGoogle Scholar
  59. Yoshibawa, T. (2010). Multifingered robot hands: Control for grasping and manipulation. Annual Reviews in Control, 34(2), 199–208.CrossRefGoogle Scholar
  60. Zopf, R., Savage, G., & Williams, M. A. (2010). Crossmodal congruency measures of lateral distance effects on the rubber hand illusion. Neuropsychologia, 48, 713–725. doi:10.1016/j.neuropsychologia.2009.10.028 CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Emilie A. Caspar
    • 1
  • Albert De Beir
    • 2
  • Pedro A. Magalhaes De Saldanha Da Gama
    • 1
  • Florence Yernaux
    • 2
  • Axel Cleeremans
    • 1
  • Bram Vanderborght
    • 2
  1. 1.Consciousness, Cognition and Computation Group (CO3), Centre de Recherche Neurosciences & Cognition (CRCN), ULB Neuroscience Institute (UNI)Université libre de Bruxelles (ULB)BruxellesBelgium
  2. 2.Robotics & Multibody Mechanics Research GroupVrij Universiteit Brussel (VUB)BruxellesBelgium

Personalised recommendations