Behavior Research Methods

, Volume 47, Issue 1, pp 172–203 | Cite as

Distinguishing state variability from trait change in longitudinal data: The role of measurement (non)invariance in latent state-trait analyses

  • Christian Geiser
  • Brian T. Keller
  • Ginger Lockhart
  • Michael Eid
  • David A. Cole
  • Tobias Koch


Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present article, we contrast LST and LGC models from the perspective of measurement invariance testing. We show that establishing a pure state-variability process requires (1) the inclusion of a mean structure and (2) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with noninvariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided.


State variability versus trait change Latent state-trait analysis Measurement invariance Latent growth curve models Model misspecification 


Author Note

The authors would like to thank Jacob Bishop for creating the path diagrams for this article.


  1. Alessandri, G., Caprara, G. V., & Tisak, J. (2012). A unified latent curve, latent state-trait analysis of the developmental trajectories and correlates of positive orientation. Multivariate Behavioral Research, 47, 341–368.CrossRefGoogle Scholar
  2. Anastasi, A. (1983). Traits, states, and situations: A comprehensive view. In H. Wainer & S. Messick (Eds.), Principals of modern psychological measurement (pp. 345–356). Hillsdale, NJ: Erlbaum.Google Scholar
  3. Baumgartner, H., & Steenkamp, J.-B. E. M. (2006). An extended paradigm for measurement analysis of marketing constructs applicable to panel data. Journal of Marketing Research, 43, 431–442.CrossRefGoogle Scholar
  4. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.CrossRefPubMedGoogle Scholar
  5. Bishop, J., Geiser, C., & Cole, D. A. (2013). Modeling growth with multiple indicators: A comparison of three approaches. Manuscript submitted for publication.Google Scholar
  6. Boll, T., Michels, T., Ferring, D., & Filipp, S.-H. (2010). Trait and state components of perceived parental differential treatment in middle adulthood: A longitudinal study. Journal of Individual Differences, 31, 158–165.CrossRefGoogle Scholar
  7. Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation approach. Hoboken, NJ: Wiley.Google Scholar
  8. Borsboom, D. (2006). The attack of the psychometricians. Psychometrika, 71, 425–440.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105, 456–466.CrossRefGoogle Scholar
  10. Chan, D. (1998). The conceptualization and analysis of change over time: An integrative approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM). Organizational Research Methods, 1, 421–483.CrossRefGoogle Scholar
  11. Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models. Sociological Methods & Research, 36, 462–494.CrossRefGoogle Scholar
  12. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255.CrossRefGoogle Scholar
  13. Cheung, G. W., & Rensvold, R. B. (1999). Testing factorial invariance across groups: A reconceptualization and proposed new method. Journal of Management, 25, 1–27.CrossRefGoogle Scholar
  14. Ciesla, J. A., Cole, D. A., & Steiger, J. H. (2007). Extending the trait-state-occasion model: How important is within-wave measurement equivalence? Structural Equation Modeling, 14, 77–97.Google Scholar
  15. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  16. Cole, D. A. (2012). Latent trait-state models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 585–600). New York: Guilford.Google Scholar
  17. Collins, L. M., & Sayer, A. G. (2001). New methods for the analysis of change. Washington, D.C.: American Psychological Association.CrossRefGoogle Scholar
  18. Deinzer, R., Steyer, R., Eid, M., Notz, P., Schwenkmezger, P., Ostendorf, F., & Neubauer, A. (1995). Situational effects in trait assessment: The FPI, NEOFFI and EPI questionnaires. European Journal of Personality, 9, 1–23.CrossRefGoogle Scholar
  19. Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2006). An introduction to latent variable growth curve modeling: Concepts, issues, and applications (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  20. Eid, M. (1996). Longitudinal confirmatory factor analysis for polytomous item responses: Model definition and model selection on the basis of stochastic measurement theory. Methods of Psychological Research - Online, 1, 65–85.Google Scholar
  21. Eid, M. (2007). Latent class models for analyzing variability and change. In A. Ong & M. van Dulmen (Eds.), Handbook of methods in positive psychology (pp. 591–607). Oxford: Oxford University Press.Google Scholar
  22. Eid, M., Courvoisier, D. S., & Lischetzke, T. (2012). Structural equation modeling of ambulatory assessment data. In M. R. Mehl & T. S. Connor (Eds.), Handbook of research methods for studying daily life (pp. 384–406). New York: Guilford.Google Scholar
  23. Eid, M., & Diener, E. (2004). Global judgments of subjective well-being: Situational variability and long-term stability. Social Indicators Research, 65, 245–277.CrossRefGoogle Scholar
  24. Eid, M., & Hoffmann, L. (1998). Measuring variability and change with an item response model for polytomous variables. Journal of Educational and Behavioral Statistics, 23, 193–215.CrossRefGoogle Scholar
  25. Eid, M., Schneider, C., & Schwenkmezger, P. (1999). Do you feel better or worse? The validity of perceived deviations of mood states from mood traits. European Journal of Personality, 13, 283–306.CrossRefGoogle Scholar
  26. Ferrer, E., Balluerka, N., & Widaman, K. F. (2008). Factorial invariance and the specification of second-order growth models. Methodology, 4, 22–36.PubMedPubMedCentralGoogle Scholar
  27. Geiser, C., & Lockhart, G. (2012). A comparison of four approaches to account for method effects in latent state trait analyses. Psychological Methods, 17, 255–283.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Geiser, C., Keller, B. T., & Lockhart, G. (2013). First- versus second-order latent growth curve models: Some insights from latent state-trait theory. Structural Equation Modeling, 20, 479–503.Google Scholar
  29. Hermes, M., Hagemann, D., Britz, P., Lieser, S., Bertsch, K., Naumann, E., & Walter, C. (2009). Latent state-trait structure of cerebral blood flow in a resting state. Biological Psychology, 80, 196–202.CrossRefPubMedGoogle Scholar
  30. Hertzog, C., & Nesselroade, J. R. (1987). Beyond autoregressive models: Some implications of the trait-state distinction for the structural modeling of developmental change. Child Development, 58, 93–109.CrossRefPubMedGoogle Scholar
  31. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  32. Jagodzinski, W., Kühnel, S. M., & Schmidt, P. (1987). Is there a ‘Socratic Effect’ in non-experimental panel studies? Consistency of an attitude toward guestworkers. Sociological Methods & Research, 15, 259–302.CrossRefGoogle Scholar
  33. Kenny, D. A. (2001). Trait-state models for longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 243–263). Washington, D.C.: American Psychological Association.CrossRefGoogle Scholar
  34. Kertes, D. A., & van Dulmen, M. (2012). Latent state trait modeling of children's cortisol at two points of the diurnal cycle. Psychoneuroendocrinology, 37, 249–255. doi: 10.1016/j.psyneuen.2011.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lorber, M. F., & O'Leary, K. D. (2011). Stability, change, and informant variance in newlywed's physical aggression: Individual and dyadic processes. Aggressive Behavior, 37, 1–15.CrossRefGoogle Scholar
  36. Luhmann, M., Schimmack, U., & Eid, M. (2011). Stability and variability in the relationship between subjective well-being and income. Journal of Research in Personality, 45, 186–197.CrossRefGoogle Scholar
  37. Marsh, H. W., Hau, K.-T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings. Structural Equation Modeling, 11, 320–341.CrossRefGoogle Scholar
  38. McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577–605.CrossRefPubMedGoogle Scholar
  39. McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In R. B. Cattell & J. Nesselroade (Eds.), Handbook of multivariate experimental psychology (2nd ed., pp. 561–614). New York: Plenum Press.CrossRefGoogle Scholar
  40. McArdle, J. J., & Hamagami, F. (2001). Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 139–175). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  41. Meredith, W. (1993). Measurement invariance, factor analysis, and factorial invariance. Psychometrika, 58, 525–543.CrossRefGoogle Scholar
  42. Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.CrossRefGoogle Scholar
  43. Millsap, R. E. (2011). Statistical approaches to measurement invariance. New York: Routledge.Google Scholar
  44. Millsap, R. E., & Meredith, W. (2007). Factorial invariance: Historical perspectives and new problems. In R. Cudeck & R. MacCallum (Eds.), Factor analysis at 100: Historical developments and future directions (pp. 130–152). Mahwah, NJ: Erlbaum.Google Scholar
  45. Muthén, L. K., & Muthén, B. O. (1998–2012). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  46. Nesselroade, J. R. (1991). Interindividual differences in intraindividual change. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change. Recent advances, unanswered questions, future directions (pp. 92–105). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  47. Ploubidis, G. B., & Frangou, S. (2011). Neuroticism and psychological distress: To what extent is their association due to the person-environment correlation? European Psychiatry, 26, 1–5.CrossRefPubMedGoogle Scholar
  48. Raykov, T. (1993). On estimating true change interrelationships with other variables. Quality and Quantity, 27, 353–370.CrossRefGoogle Scholar
  49. Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Test of significance and descriptive goodness-of-fit measures. Methods of Psychological Research - Online, 8, 23–74.Google Scholar
  50. Schermelleh-Engel, K., Keith, N., Moosbrugger, H., & Hodapp, V. (2004). Decomposing person and occasion-specific effects: An extension of latent state-trait theory to hierarchical LST models. Psychological Methods, 9, 198–219.CrossRefPubMedGoogle Scholar
  51. Schmitt, M. J., & Steyer, R. (1993). A latent state-trait model (not only) for social desirability. Personality and Individual Differences, 14, 519–529.CrossRefGoogle Scholar
  52. Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180.CrossRefGoogle Scholar
  53. Steyer, R. (1989). Models of classical psychometric test theory as stochastic measurement models: Representation, uniqueness, meaningfulness, identifiability, and testability. Methodika, 3, 25–60.Google Scholar
  54. Steyer, R., Eid, M., & Schwenkmezger, P. (1997). Modeling true intraindividual change: True change as a latent variable. Methods of Psychological Research Online, 2, 21–33.Google Scholar
  55. Steyer, R., Ferring, D., & Schmitt, M. J. (1992). States and traits in psychological assessment. European Journal of Psychological Assessment, 8, 79–98.Google Scholar
  56. Steyer, R., Geiser, C., & Fiege, C. (2012). Latent state-trait models. In H. Cooper (Ed.), Handbook of research methods in psychology (pp. 291–308). Washington, DC: American Psychological Association.Google Scholar
  57. Steyer, R., Krambeer, S., & Hannöver, W. (2004). Modeling latent trait-change. In K. Van Montfort, H. Oud, & A. Satorra (Eds.), Recent developments on structural equation modeling: Theory and applications (pp. 337–357). Amsterdam: Kluwer Academic Press.CrossRefGoogle Scholar
  58. Steyer, R., Majcen, A.-M., Schwenkmezger, P., & Buchner, A. (1989). A latent state-trait anxiety model and its application to determine consistency and specificity coefficients. Anxiety Research, 1, 281–299.CrossRefGoogle Scholar
  59. Steyer, R., Schmitt, M., & Eid, M. (1999). Latent state-trait theory and research in personality and individual differences. European Journal of Personality, 13, 389–408.CrossRefGoogle Scholar
  60. Tisak, J., & Tisak, M. S. (2000). Permanency and ephemerality of psychological measures with application to organizational commitment. Psychological Methods, 5, 175–198.CrossRefPubMedGoogle Scholar
  61. Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–70.CrossRefGoogle Scholar
  62. von Oerzen, T., Hertzog, C., Lindenberger, U., & Ghisletta, P. (2010). The effect of multiple indicators on the power to detect inter-individual differences in change. British Journal of Mathematical and Statistical Psychology, 63, 627–646.CrossRefGoogle Scholar
  63. Widaman, K. F., & Reise, S. P. (1997). Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. In K. J. Bryant, M. Windle, & S. G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 281–324). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  64. Windle, M., & Dumenci, L. (1998). An investigation of maternal and adolescent depressed mood using a latent trait-state model. Journal of Research on Adolescence, 8, 461–484.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Christian Geiser
    • 1
  • Brian T. Keller
    • 2
  • Ginger Lockhart
    • 1
  • Michael Eid
    • 3
  • David A. Cole
    • 4
  • Tobias Koch
    • 3
  1. 1.Department of PsychologyUtah State UniversityLoganUSA
  2. 2.Department of PsychologyArizona State UniversityPhoenixUSA
  3. 3.Department of Education and PsychologyFreie Universität BerlinBerlinGermany
  4. 4.Department of Psychology and Human DevelopmentVanderbilt UniversityNashvilleUSA

Personalised recommendations