Advertisement

Behavior Research Methods

, Volume 46, Issue 4, pp 1052–1067 | Cite as

A behavioral database for masked form priming

  • James S. Adelman
  • Rebecca L. Johnson
  • Samantha F. McCormick
  • Meredith McKague
  • Sachiko Kinoshita
  • Jeffrey S. Bowers
  • Jason R. Perry
  • Stephen J. Lupker
  • Kenneth I. Forster
  • Michael J. Cortese
  • Michele Scaltritti
  • Andrew J. Aschenbrenner
  • Jennifer H. Coane
  • Laurence White
  • Melvin J. Yap
  • Chris Davis
  • Jeesun Kim
  • Colin J. Davis
Article

Abstract

Reading involves a process of matching an orthographic input with stored representations in lexical memory. The masked priming paradigm has become a standard tool for investigating this process. Use of existing results from this paradigm can be limited by the precision of the data and the need for cross-experiment comparisons that lack normal experimental controls. Here, we present a single, large, high-precision, multicondition experiment to address these problems. Over 1,000 participants from 14 sites responded to 840 trials involving 28 different types of orthographically related primes (e.g., castfe–CASTLE) in a lexical decision task, as well as completing measures of spelling and vocabulary. The data were indeed highly sensitive to differences between conditions: After correction for multiple comparisons, prime type condition differences of 2.90 ms and above reached significance at the 5% level. This article presents the method of data collection and preliminary findings from these data, which included replications of the most widely agreed-upon differences between prime types, further evidence for systematic individual differences in susceptibility to priming, and new evidence regarding lexical properties associated with a target word’s susceptibility to priming. These analyses will form a basis for the use of these data in quantitative model fitting and evaluation and for future exploration of these data that will inform and motivate new experiments.

Keywords

Visual word recognition Lexical decision Orthographic priming Megastudies 

Notes

Acknowledgments

James S. Adelman and Colin J. Davis are the organizers (senior authors) of this project. Other authors are listed in order of contribution. We thank Alexa Banculli, Peter Bowles, Josef Broder, Helen Brown, Leo Chong, Alison Crumpton, Laura Cunniffe, Louise Goddard, Laura Grima, Lydia Gunning, Anna Hall, Hyun Kyoung Jung, Hannah Jenkins, Julie Lee, Bree Loethen, Mayumi Kohiyama, Stuart Miller, Luke Mills, Nicole Newson, Ann-Marie Raphail, Emma Roscow, Jocelyn Schock, Annabel Snell, Allison Teevan, Wan Zhen Chua, Louise Warner, Melissa Yeo, and Jimmie Zhang for their assistance in data collection and Dave Balota for helpful comments. Data collection at Royal Holloway, University of London, was supported by a grant from the Experimental Psychology Society.

References

  1. Adelman, J. S. (2011). Letters and time in retinotopic space. Psychological Review, 118, 570–582.PubMedCrossRefGoogle Scholar
  2. Adelman, J. S., & Brown, G. D. A. (2007). Phonographic neighbors, not orthographic neighbors, determine word naming latencies. Psychonomic Bulletin & Review, 14, 455–459.CrossRefGoogle Scholar
  3. Adelman, J. S., & Brown, G. D. A. (2008a). Methods of testing and diagnosing models: Single and dual route cascaded models of word naming. Journal of Memory and Language, 59, 524–544.CrossRefGoogle Scholar
  4. Adelman, J. S., & Brown, G. D. A. (2008b). Modeling lexical decision: The form of frequency and diversity effects. Psychological Review, 114, 214–227.CrossRefGoogle Scholar
  5. Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual diversity, not word frequency, determines word-naming and lexical decision times. Psychological Science, 17, 814–823.PubMedCrossRefGoogle Scholar
  6. Andrews, S. (2008). Lexical expertise and reading skill. Psychology of Learning and Motivation, 49, 249–281.Google Scholar
  7. Andrews, S., & Hersch, J. (2010). Lexical precision in skilled readers: Individual differences in masked neighbor priming. Journal of Experimental Psychology: General, 139, 299–318.CrossRefGoogle Scholar
  8. Andrews, S., & Lo, S. (2012). Not all skilled readers have cracked the code: Individual differences in masked form priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 152–163.PubMedGoogle Scholar
  9. Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX Lexical Database (Release 2) [CD-ROM]. Philadelphia: Linguistic Data Consortium, University of Pennsylvania.Google Scholar
  10. Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. I., Kessler, B., Loftis, B., et al. (2007). The English Lexicon Project. Behavior Research Methods, 39, 445–459.PubMedCrossRefGoogle Scholar
  11. Balota, D. A., Yap, M. J., Hutchison, K. A., & Cortese, M. J. (2012). Megastudies: What do millions (or so) of trials tell us about lexical processing? In J. S. Adelman (Ed.), Visual word recognition (Models and methods, orthography and phonology, Vol. 1, pp. 90–115). Hove: Psychology Press.Google Scholar
  12. Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41, 977–990.PubMedCrossRefGoogle Scholar
  13. Burgess, C. (1998). From simple associations to the building blocks of language: Modeling meaning in memory with the HAL model. Behavior Research Methods, Instruments and Computers, 30, 188–198.CrossRefGoogle Scholar
  14. Burt, J. S., & Tate, H. (2002). Does a reading lexicon provide orthographic representations for spelling? Journal of Memory and Language, 46, 518–543.CrossRefGoogle Scholar
  15. Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335–359.CrossRefGoogle Scholar
  16. Coltheart, M., Davelaar, E., Jonasson, J. T., & Besner, D. (1977). Access to the internal lexicon. In S. Dornič (Ed.), Attention and performance VI (pp. 535–555). Hillsdale, NJ: Erlbaum.Google Scholar
  17. Damian, M. F. (2010). Does variability in human performance outweigh imprecision in response devices such as computer keyboards? Behavior Research Methods, 42, 205–211.PubMedCrossRefGoogle Scholar
  18. Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117, 713–758.PubMedCrossRefGoogle Scholar
  19. Davis, C. J., & Bowers, J. S. (2006). Contrasting five different theories of letter position coding: Evidence from orthographic similarity effects. Journal of Experimental Psychology: Human Perception and Performance, 32, 535–557.PubMedGoogle Scholar
  20. Davis, C. J., & Lupker, S. J. (2006). Masked inhibitory priming in English: Evidence for lexical inhibition. Journal of Experimental Psychology: Human Perception and Performance, 32, 668–687.PubMedGoogle Scholar
  21. Estes, W. K., Allemeyer, D. H., & Reder, S. M. (1976). Serial position functions for letter identification at brief and extended exposure durations. Perception & Psychophysics, 19, 1–15.CrossRefGoogle Scholar
  22. Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680–698.Google Scholar
  23. Forster, K. I., Davis, C., Schoknecht, C., & Carter, R. (1987). Masked priming with graphemically related forms: Repetition or partial activation? Quarterly Journal of Experimental Psychology, 39, 211–251.CrossRefGoogle Scholar
  24. Forster, K. I., & Forster, J. C. (2003). DMDX: A windows display program with millisecond accuracy. Behavior Research Methods, Instruments and Computers, 35, 116–124.CrossRefGoogle Scholar
  25. Grainger, J., Granier, J. P., Farioli, F., Van Assche, E., & van Heuven, W. J. B. (2006). Letter position information and printed word perception: The relative-position priming constraint. Journal of Experimental Psychology: Human Perception and Performance, 32, 865–884.PubMedGoogle Scholar
  26. Grainger, J., & van Heuven, W. (2003). Modeling letter position coding in printed word perception. In P. Bonin (Ed.), The mental lexicon (pp. pp. 1–pp. 24). New York: Nova Science.Google Scholar
  27. Guerrera, C., & Forster, K. (2008). Masked form priming with extreme transposition. Language and Cognitive Processes, 23, 117–142.CrossRefGoogle Scholar
  28. Humphreys, G. W., Evett, L. J., & Quinlan, P. T. (1990). Orthographic processing in visual word identification. Cognitive Psychology, 22, 517–560.PubMedCrossRefGoogle Scholar
  29. Hutchison, K. A., Balota, D. A., Cortese, M. J., & Watson, J. M. (2007). Predicting semantic priming at the item level. Quarterly Journal of Experimental Psychology, 61, 1036–1066.CrossRefGoogle Scholar
  30. Hutchison K. A, Balota D. A, Neely J. H, Cortese M. J, Cohen-Shikora E. R, Tse C. -S, Buchanan E, (2014). The semantic priming project. Behavior Research Methods. doi:  10.3758/s13428-012-0304-z
  31. Kinoshita, S. (2006). Additive and interactive effects of word frequency and masked repetition in the lexical decision task. Psychonomic Bulletin & Review, 13, 668–673.CrossRefGoogle Scholar
  32. Lupker, S. J., & Davis, C. J. (2009). Sandwich priming: A method for overcoming the limitations of masked priming by reducing lexical competitor effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 618–639.PubMedGoogle Scholar
  33. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375–407.CrossRefGoogle Scholar
  34. Norris, D., & Kinoshita, S. (2012). Reading through a noisy channel: Why there’s nothing special about the perception of orthography. Psychological Review, 119, 517–545.PubMedCrossRefGoogle Scholar
  35. Norris, D., Kinoshita, S., & van Casteren, M. (2010). A stimulus sampling theory of letter identity and order. Journal of Memory and Language, 62, 254–271.CrossRefGoogle Scholar
  36. Pashler, H., & Wagenmakers, E. J. (2012). Editors’ introduction to the special section on replicability in psychological science: A crisis of confidence? Perspectives on Psychological Science, 7, 528–530.CrossRefGoogle Scholar
  37. Peereman, R., & Content, A. (1997). Orthographic and phonological neighborhoods in naming: Not all neighbors are equally influential in orthographic space. Journal of Memory and Language, 37, 382–410.CrossRefGoogle Scholar
  38. Perea, M., & Lupker, S. J. (2003). Transposed-letter confusability effects in masked form priming. In S. Kinoshita & S. J. Lupker (Eds.), Masked priming: The state of the art (pp. 97–120). Hove, UK: Psychology Press.Google Scholar
  39. Rastle, K., & Brysbaert, M. (2006). Masked phonological priming effects in English: Are they real? Do they matter? Cognitive Psychology, 53, 97–145.PubMedCrossRefGoogle Scholar
  40. Schoonbaert, S., & Grainger, J. (2004). Letter position coding in printed word perception: Effects of repeated and transposed letters. Language and Cognitive Processes, 19, 333–367.CrossRefGoogle Scholar
  41. Shipley, W. C. (1940). A self-administering scale for measuring intellectual impairment and deterioration. The Journal of Psychology, 9, 371–377. doi: 10.1080/00223980.1940.9917704 CrossRefGoogle Scholar
  42. Spieler, D. H., & Balota, D. A. (1997). Bringing computational models of word naming down to the item level. Psychological Science, 8, 411–416.CrossRefGoogle Scholar
  43. Ulrich, R., & Giray, M. (1989). Time resolution of clocks: Effects on reaction time measurement—good news for bad clocks. British Journal of Mathematical and Statistical Psychology, 42, 1–12.CrossRefGoogle Scholar
  44. Van Assche, E., & Grainger, J. (2006). A study of relative-position priming with superset primes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 399–415.PubMedGoogle Scholar
  45. Yap, M. J., Balota, D. A., Sibley, D. E., & Ratcliff, R. (2012). Individual differences in visual word recognition: Insights from the English Lexicon Project. Journal of Experimental Psychology: Human Perception and Performance, 38, 53–79.PubMedCentralPubMedGoogle Scholar
  46. Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15, 971–979.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • James S. Adelman
    • 1
  • Rebecca L. Johnson
    • 2
  • Samantha F. McCormick
    • 3
  • Meredith McKague
    • 4
  • Sachiko Kinoshita
    • 5
  • Jeffrey S. Bowers
    • 6
  • Jason R. Perry
    • 7
  • Stephen J. Lupker
    • 7
  • Kenneth I. Forster
    • 8
  • Michael J. Cortese
    • 9
  • Michele Scaltritti
    • 10
  • Andrew J. Aschenbrenner
    • 10
  • Jennifer H. Coane
    • 11
  • Laurence White
    • 12
  • Melvin J. Yap
    • 13
  • Chris Davis
    • 14
  • Jeesun Kim
    • 14
  • Colin J. Davis
    • 3
    • 6
  1. 1.Department of PsychologyUniversity of WarwickCoventryUK
  2. 2.Skidmore CollegeSaratoga SpringsUSA
  3. 3.Royal Holloway, University of LondonEghamUK
  4. 4.University of MelbourneParkville VicAustralia
  5. 5.Macquarie UniversitySydneyAustralia
  6. 6.University of BristolBristolUK
  7. 7.University of Western OntarioLondonCanada
  8. 8.University of ArizonaPhoenixUSA
  9. 9.University of NebraskaOmahaUSA
  10. 10.Washington UniversitySt. LouisUSA
  11. 11.Colby CollegeWatervilleUSA
  12. 12.Plymouth UniversityPlymouthUK
  13. 13.National University of SingaporeSingaporeSingapore
  14. 14.Marcs Institute, University of Western SydneyBankstownAustralia

Personalised recommendations