Advertisement

Behavior Research Methods

, Volume 46, Issue 4, pp 1032–1041 | Cite as

Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system

  • Anastasi KosmadopoulosEmail author
  • Charli Sargent
  • David Darwent
  • Xuan Zhou
  • Gregory D. Roach
Article

Abstract

The objective of this study was to assess the validity of a sleep/wake activity monitor, an energy expenditure activity monitor, and a partial-polysomnography system at measuring sleep and wake under identical conditions. Secondary aims were to evaluate the sleep/wake thresholds for each activity monitor and to compare the three devices. To achieve these aims, two nights of sleep were recorded simultaneously with polysomnography (PSG), two activity monitors, and a partial-PSG system in a sleep laboratory. Agreement with PSG was evaluated epoch by epoch and with summary measures including total sleep time (TST) and wake after sleep onset (WASO). All of the devices had high agreement rates for identifying sleep and wake, but the partial-PSG system was the best, with an agreement of 91.6 % ± 5.1 %. At their best thresholds, the sleep/wake monitor (medium threshold, 87.7 % ± 7.6 %) and the energy expenditure monitor (very low threshold, 86.8 % ± 8.6 %) had similarly high rates of agreement. The summary measures were similar to those determined by PSG, but the partial-PSG system provided the most consistent estimates. Although the partial-PSG system was the most accurate device, both activity monitors were also valid for sleep estimation, provided that appropriate thresholds were selected. Each device has advantages, so the primary consideration for researchers will be to determine which best suits a given research design.

Keywords

Actigraphy Accelerometry Wireless sleep monitoring 

Notes

Author note

The authors wish to express appreciation to Michele Lastella for his assistance in data collection.

References

  1. Acebo, C., Sadeh, A., Seifer, R., Tzischinsky, O., Hafer, A., & Carskadon, M. A. (2005). Sleep/wake patterns derived from activity monitoring and maternal report for healthy 1- to 5-year-old children. Sleep, 28, 1568–1577.PubMedGoogle Scholar
  2. Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327, 307–310. doi: 10.1016/S0140-6736(86)90837-8 CrossRefGoogle Scholar
  3. CamNTech Ltd. (2008). The Actiwatch user manual v7.2. Cambridge, UK: Author.Google Scholar
  4. Carney, C. E., Lajos, L. E., & Waters, W. F. (2004). Wrist actigraph versus self-report in normal sleepers: Sleep schedule adherence and self-report validity. Behavioral Sleep Medicine, 2, 134–143. doi: 10.1207/s15402010bsm0203_2 PubMedCrossRefGoogle Scholar
  5. Carskadon, M. A., Dement, W. C., Mitler, M. M., Roth, T., Westbrook, P. R., & Keenan, S. (1986). Guidelines for the multiple sleep latency test (MSLT): A standard measure of sleepiness. Sleep, 9, 519–524.PubMedGoogle Scholar
  6. Cole, R. J., Kripke, D. F., Gruen, W., Mullaney, D. J., & Gillin, J. C. (1992). Automatic sleep/wake identification from wrist activity. Sleep, 15, 461–469.PubMedGoogle Scholar
  7. Darwent, D., Roach, G., & Dawson, D. (2012). How well do truck drivers sleep in cabin sleeper berths? Applied Ergonomics, 43, 442–446. doi: 10.1016/j.apergo.2011.06.019 PubMedCrossRefGoogle Scholar
  8. de Souza, L., Benedito-Silva, A. A., Pires, M. L. N., Poyares, D., Tufik, S., & Calil, H. M. (2003). Further validation of actigraphy for sleep studies. Sleep, 1, 81–85.Google Scholar
  9. Evans, D. S., Snitker, S., Wu, S.-H., Mody, A., Njajou, O. T., Perlis, M. L., … Hsueh, W.-C. (2011). Habitual sleep/wake patterns in the Old Order Amish: Heritability and association with non-genetic factors. Sleep, 34, 661–669.Google Scholar
  10. Galland, B. C., Kennedy, G. J., Mitchell, E. A., & Taylor, B. J. (2012). Algorithms for using an activity-based accelerometer for identification of infant sleep–wake states during nap studies. Sleep Medicine, 13, 743–751. doi: 10.1016/j.sleep.2012.01.018 PubMedCrossRefGoogle Scholar
  11. Griessenberger, H., Heib, D. P. J., Kunz, A. B., Hoedlmoser, K., & Schabus, M. (2013). Assessment of a wireless headband for automatic sleep scoring. Sleep and Breathing, 17, 747–752. doi: 10.1007/s11325-012-0757-4 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Heil, D. P. (2006). Predicting activity energy expenditure using the Actical activity monitor. Research Quarterly for Exercise and Sport, 77, 64–80. doi: 10.1080/02701367.2006.10599333 PubMedCrossRefGoogle Scholar
  13. Hyde, M., O’Driscoll, D. M., Binette, S., Galang, C., Tan, S. K., Verginis, N., … Horne, R. S. C. (2007). Validation of actigraphy for determining sleep and wake in children with sleep disordered breathing. Journal of Sleep Research, 16, 213–216. doi: 10.1111/j.1365-2869.2007.00588.x Google Scholar
  14. Jean-Louis, G., Kripke, D. F., Mason, W. J., Elliott, J. A., & Youngstedt, S. D. (2001). Sleep estimation from wrist movement quantified by different actigraphic modalities. Journal of Neuroscience Methods, 105, 185–191. doi: 10.1016/S0165-0270(00)00364-2 PubMedCrossRefGoogle Scholar
  15. Kanady, J. C., Drummond, S. P. A., & Mednick, S. C. (2011). Actigraphic assessment of a polysomnographic-recorded nap: A validation study. Journal of Sleep Research, 20, 214–222. doi: 10.1111/j.1365-2869.2010.00858.x PubMedCrossRefGoogle Scholar
  16. Kosmadopoulos, A., Sargent, C., Zhou, X., Darwent, D., & Roach, G. D. (2012). Two for one? Validating an energy expenditure monitor against polysomnography for sleep/wake measurement. In X. Zhou & C. Sargent (Eds.), Sleep of different populations (pp. 16–20). Adelaide, Australia: Australasian Chronobiology Society.Google Scholar
  17. Kushida, C. A., Chang, A., Gadkary, C., Guilleminault, C., Carrillo, O., & Dement, W. C. (2001). Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disorderd patients. Sleep Medicine, 2, 389–396. doi: 10.1016/S1389-9457(00)00098-8 PubMedCrossRefGoogle Scholar
  18. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. Retrieved from www.jstor.org/stable/2529310
  19. Oakley, N. R. (1997). Validation with polysomnography of the Sleepwatch sleep/wake scoring algorithm used by the Actiwatch activity monitoring system (Technical Report). Bend, OR: Mini-Mitter Co.Google Scholar
  20. Paquet, J., Kawinska, A., & Carrier, J. (2007). Wake detection capacity of actigraphy during sleep. Sleep, 30, 1362–1369.PubMedCentralPubMedGoogle Scholar
  21. Paterson, J., Dorrian, J., Pincombe, J., Grech, C., & Dawson, D. (2010). Mood change and perception of workload in Australian midwives. Industrial Health, 48, 381–389. doi: 10.2486/indhealth.MSSW-01 PubMedCrossRefGoogle Scholar
  22. Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, techniques, and scoring system for sleep stages of human subjects. Los Angeles, CA: University of California, Brain Information Service/Brain Research Institute.Google Scholar
  23. Reid, K., & Dawson, D. (1999). Correlation between wrist activity monitor and electrophysiological measures of sleep in a simulated shiftwork environment for younger and older subjects. Sleep, 22, 378–385.PubMedGoogle Scholar
  24. Roach, G. D., Petrilli, R. M. A., Dawson, D., & Lamond, N. (2012). Impact of layover length on sleep, subjective fatigue levels, and sustained attention of long-haul airline pilots. Chronobiology International, 29, 580–586. doi: 10.3109/07420528.2012.675222 PubMedCrossRefGoogle Scholar
  25. Roach, G. D., Sargent, C., Darwent, D., & Dawson, D. (2012). Duty periods with early start times restrict the amount of sleep obtained by short-haul airline pilots. Accident Analysis and Prevention, 45S, 22–26. doi: 10.1016/j.apergo.2011.06.019 CrossRefGoogle Scholar
  26. Robillard, R., Lambert, T. J. R., & Rogers, N. L. (2012). Measuring sleep–wake patterns with physical activity and energy expenditure monitors. Biological Rhythm Research, 43, 555–562. doi: 10.1080/09291016.2011.614794 CrossRefGoogle Scholar
  27. Rupp, T. L., & Balkin, T. J. (2011). Comparison of Motionlogger Watch and Actiwatch actigraphs to polysomnography for sleep/wake estimation in healthy young adults. Behavior Research Methods, 43, 1152–1160. doi: 10.3758/s13428-011-0098-4 PubMedCrossRefGoogle Scholar
  28. Sadeh, A., Sharkey, K. M., & Carskadon, M. A. (1994). Activity-based sleep-wake identification: An empirical test of methodological issues. Sleep, 17, 201–207.PubMedGoogle Scholar
  29. Sargent, C., Halson, S., & Roach, G. D. (2012). Sleep or swim? Early-morning training severely restricts the amount of sleep obtained by elite swimmers. European Journal of Sport Science. doi: 10.1080/17461391.2012.696711
  30. Shambroom, J. R., Fabregas, S. E., & Johnstone, J. (2012). Validation of an automated wireless system to monitor sleep in healthy adults. Journal of Sleep Research, 21, 221–230. doi: 10.1111/j.1365-2869.2011.00944.x PubMedCrossRefGoogle Scholar
  31. Signal, L. T., Gale, J., & Gander, P. (2005). Sleep measurement in flight crew: Comparing actigraphic and subjective estimates to polysomnography. Aviation, Space, and Environmental Medicine, 76, 1058–1063.PubMedGoogle Scholar
  32. Sim, J., & Wright, C. C. (2005). The Kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Physical Therapy, 85, 257–268. Retrieved from www.physicaltherapyjournal.com/
  33. te Lindert, B. H., & Van Someren, E. J. (2013). Sleep estimates using microelectromechanical systems (MEMS). Sleep, 36, 781–789. doi: 10.5665/sleep.2648 Google Scholar
  34. Tremaine, R., Dorrian, J., Paterson, J., Neall, A., Piggott, E., Grech, C., & Pincombe, J. (2013). Actigraph estimates of the sleep of Australian midwives: The impact of shift work. Biological Research for Nursing, 15, 191–199. doi: 10.1177/1099800411422249 PubMedCrossRefGoogle Scholar
  35. Van de Water, A. T. M., Holmes, A., & Hurley, D. A. (2011). Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography—a systematic review. Journal of Sleep Research, 20, 183–200. doi: 10.1111/j.1365-2869.2009.00814.x PubMedCrossRefGoogle Scholar
  36. Weiss, A. R., Johnson, N. L., Berger, N. A., & Redline, S. (2010). Validity of activity-based devices to estimate sleep. Journal of Clinical Sleep Medicine, 6, 336–342.PubMedCentralPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Anastasi Kosmadopoulos
    • 1
    • 2
    Email author
  • Charli Sargent
    • 1
  • David Darwent
    • 1
  • Xuan Zhou
    • 1
  • Gregory D. Roach
    • 1
  1. 1.Appleton InstituteCentral Queensland UniversityGoodwoodAustralia
  2. 2.Bushfire Co-operative Research CentreEast MelbourneAustralia

Personalised recommendations