Behavior Research Methods

, Volume 46, Issue 2, pp 307–330 | Cite as

Systems factorial technology with R

  • Joseph W. Houpt
  • Leslie M. Blaha
  • John P. McIntire
  • Paul R. Havig
  • James T. Townsend


Systems factorial technology (SFT) comprises a set of powerful nonparametric models and measures, together with a theory-driven experiment methodology termed the double factorial paradigm (DFP), for assessing the cognitive information-processing mechanisms supporting the processing of multiple sources of information in a given task (Townsend and Nozawa, Journal of Mathematical Psychology 39:321–360, 1995). We provide an overview of the model-based measures of SFT, together with a tutorial on designing a DFP experiment to take advantage of all SFT measures in a single experiment. Illustrative examples are given to highlight the breadth of applicability of these techniques across psychology. We further introduce and demonstrate a new package for performing SFT analyses using R for statistical computing.


Response Time Distribution Stimulus Rate Cumulative Hazard Function Capacity Coefficient Selective Influence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by AFOSR grant 10RH07COR to the late D. W. Repperger and P. R. Havig. We would like to thank Chris Myers for his comments on an early version of the manuscript.


  1. Aalen, O. O., Borgan, Ø., & Gjessing, H. K. (2008). Survival and event history analysis: A process point of view. New York: Springer.CrossRefGoogle Scholar
  2. Altieri, N., & Townsend, J. T. (2011). An assessment of behavioral dynamic information processing measures in audiovisual speech perception. Frontiers in Psychology, 2, 1–15.CrossRefGoogle Scholar
  3. Blaha, L. M. (2010). A dynamic Hebbian-style model of configural learning. PhD, Indiana University, Bloomington, Indiana.Google Scholar
  4. Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57, 153–178.PubMedCrossRefGoogle Scholar
  5. Burns, D. M., Houpt, J. W., & Townsend, J. T. (2013). Functional principal components analysis of workload capacity functions. Behavior Research Methods, 1-10. doi: 10.3758/s13428-013-0333-2
  6. Burns, D. M., Pei, L., Houpt, J. W., & Townsend, J. T. (2009). Facial perception as a configural process. Poster presented at: Annual Meeting of the Cognitive Science Society.Google Scholar
  7. Chechile, R. A. (2003). Mathematical tools for hazard function analysis. Journal of Mathematical Psychology, 47, 478–494.CrossRefGoogle Scholar
  8. Chechile, R. A. (2011). Properties of reverse hazard functions. Journal of Mathematical Psychology, 55, 203–222.CrossRefGoogle Scholar
  9. Donders, F. C. (1969). On the speed of mental processes. In W. G. Koster (Ed. & Trans.), Acta psychologica (pp. 412–431). Amsterdam: North-Holland Publishing Company.Google Scholar
  10. Donnelly, N., Cornes, K., & Menneer, T. (2012). An examination of the processing capacity of features in the Thatcher illusion. Attention, Perception, & Psychophysics, 74, 1475–1487.CrossRefGoogle Scholar
  11. Dzhafarov, E. N. (2003). Selective influence through conditional independence. Psychometrika, 68, 7–26.CrossRefGoogle Scholar
  12. Dzhafarov, E. N., & Gluhovsky, I. (2006). Notes on selective influence, probabilistic causality, and probabilistic dimensionality. Journal of Mathematical Psychology, 50, 390–401.CrossRefGoogle Scholar
  13. Dzhafarov, E. N., Schweickert, R., & Sung, K. (2004). Mental architectures with selectively influenced but stochastically interdependent components. Journal of Mathematical Psychology, 48, 51–64.CrossRefGoogle Scholar
  14. Eidels, A., Donkin, C., Brown, S. D., & Heathcote, A. (2010). Converging measures of workload capacity. Psychonomic Bulletin & Review, 17, 763–771.CrossRefGoogle Scholar
  15. Eidels, A., Houpt, J. W., Pei, L., Altieri, N., & Townsend, J. T. (2011). Nice guys finish fast, bad guys finish last: Facilitatory vs. inhibitory interaction in parallel systems. Journal of Mathematical Psychology, 55, 176–190.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Eidels, A., & Townsend, J. T. (2009). Testing response time predictions of a large class of parallel models within or and and redundant signals paradigm. Presented at the 2009 Annual Meeting of the Society of Mathematical Psychology. Amsterdam, Netherlands.Google Scholar
  17. Fifić, M., Little, D. R., & Nosofsky, R. M. (2010). Logical-rule models of classification response times: A synthesis of mental-architecture, random-walk, and decision-bound approaches. Psychological Review, 117, 309–348.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fifić, M., Nosofsky, R. M., & Townsend, J. T. (2008). Information-processing architectures in multidimensional classification: A validation test of the systems factorial technology. Journal of Experimental Psychology: Human Perception and Performance, 34, 356–375.PubMedCentralPubMedGoogle Scholar
  19. Fifić, M., & Townsend, J. T. (2010). Information-processing alternatives to holistic perception: Identifying the mechanisms of secondary-level holism within a categorization paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1290–1313.PubMedCentralPubMedGoogle Scholar
  20. Fific, M., Townsend, J. T., & Eidels, A. (2008). Studying visual search using Systems Factorial Methodology with target-distractor similarity as the factor. Perception & Psychophysics, 70, 583–603.CrossRefGoogle Scholar
  21. Garner, W. R. (1974). The processing of information and structure. New York: Wiley.Google Scholar
  22. Garner, W. R., & Felfoldy, G. L. (1970). Integrality of stimulus dimensions in various types of information processing. Cognitive Psychology, 1, 225–241.CrossRefGoogle Scholar
  23. Houpt, J. W., & Townsend, J. T. (2010a). A new perspective on visual word processing efficiency. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. s1148–s1153). Austin, TX: Cognitive Science Society.Google Scholar
  24. Houpt, J. W., & Townsend, J. T. (2010b). The statistical properties of the survivor interaction contrast. Journal of Mathematical Psychology, 54, 446–453.CrossRefGoogle Scholar
  25. Houpt, J. W., & Townsend, J. T. (2011). An extension of SIC predictions to the Wiener coactive model. Journal of Mathematical Psychology, 55, 267–270.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Houpt, J. W., & Townsend, J. T. (2012). Statistical measures for workload capacity analysis. Journal of Mathematical Psychology, 56, 341–355.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ingvalson, E. M., & Wenger, M. J. (2005). A strong test of the dual-mode hypothesis. Perception & Psychophysics, 67, 14–35.CrossRefGoogle Scholar
  28. Johnson, S. A., Blaha, L. M., Houpt, J. W., & Townsend, J. T. (2010). Systems factorial technology provides new insights on global–local information processing in autism spectrum disorders. Journal of Mathematical Psychology, 54, 53–72.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological discrimination. Psychometrika, 40, 77–105.CrossRefGoogle Scholar
  30. Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14, 247–279.PubMedCrossRefGoogle Scholar
  31. Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of divided attention. Journal of Experimental Psychology. Human Perception and Performance, 17, 520–538.PubMedCrossRefGoogle Scholar
  32. Neufeld, R. W., Townsend, J. T., & Jetté, J. (2007). Quantitative response time technology for measuring cognitive-processing capacity in clinical studies. In R. W. Neufeld (Ed.), Advances in clinical cognitive science: Formal modeling and assessment of processes and symptoms (pp. 207–238). Washington, D. C: American Psychological Association.CrossRefGoogle Scholar
  33. Perry, L., Blaha, L. M., & Townsend, J. T. (2008). Reassessing the architecture of same-different face judgments. Journal of Vision, 8, 88.Google Scholar
  34. R Development Core Team. (2011). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria.
  35. Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for 2-choice response. Psychological Review, 3, 333–367.CrossRefGoogle Scholar
  36. Reinach, S. G. (1960). A nonparametric analysis for a multiway classification with one element per cell. South African Journal of Agricultural Science, 8, 941–960.Google Scholar
  37. Repperger, D. W., Havig, P. R., Reis, G. A., Farris, K. A., McIntire, J. P., & Townsend, J. T. (2009). Studies on hazard functions and human performance. The Ohio Journal of Science, 109.Google Scholar
  38. Sawilowsky, S. S. (1990). Nonparametric tests of interaction in experimental design. Review of Educational Research, 60, 91–126.CrossRefGoogle Scholar
  39. Schwarz, W. (1989). A new model to explain the redundant-signals effect. Perception & Psychophysics, 46, 498–500.CrossRefGoogle Scholar
  40. Schwarz, W. (1994). Diffusion, superposition, and the redundant-targets effect. Journal of Mathematical Psychology, 38, 504–520.CrossRefGoogle Scholar
  41. Townsend, J. T. (1972). Some results concerning the identifiability of parallel and serial processes. British Journal of Mathematical and Statistical Psychology, 25, 168–199.CrossRefGoogle Scholar
  42. Townsend, J. T. (1974). Issues and models concerning the processing of a finite number of inputs. In B. H. Kantowitz (Ed.), Human information processing: Tutorials in performance and cognition (pp. 133–168). Hillsdale, NJ: Erlbaum Press.Google Scholar
  43. Townsend, J. T., & Altieri, N. (2012). An accuracy-response time capacity assessment function that measures performance against standard parallel predictions. Psychological Review, 119, 500–516.PubMedCrossRefGoogle Scholar
  44. Townsend, J. T., & Ashby, F. G. (1983). The stochastic modeling of elementary psychological processes. Cambridge: Cambridge University Press.Google Scholar
  45. Townsend, J. T., & Eidels, A. (2011). Workload capacity spaces: A unified methodology for response time measures of efficiency as workload is varied. Psychonomic Bulletin & Review, 18, 659–681.CrossRefGoogle Scholar
  46. Townsend, J. T., & Fifić, M. (2004). Parallel and serial processing and individual differences in high-speed scanning in human memory. Perception & Psychophysics, 66, 953–962.CrossRefGoogle Scholar
  47. Townsend, J. T., & Honey, C. J. (2007). Consequences of base time for redundant signals experiments. Journal of Mathematical Psychology, 51, 242–265.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary perception: An investigation of parallel, serial and coactive theories. Journal of Mathematical Psychology, 39, 321–360.CrossRefGoogle Scholar
  49. Townsend, J. T., & Thomas, R. D. (1994). Stochastic dependencies in parallel and serial models: Effects on systems factorial interactions. Journal of Mathematical Psychology, 38, 1–24.CrossRefGoogle Scholar
  50. Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel processing: New capacity measures and predictions for a response time inequality series. Psychological Review, 111, 1003–1035.PubMedCrossRefGoogle Scholar
  51. Von Der Heide, R. J., Wenger, M. J., Gilmore, R. O., & Elbich, D. (2011). Developmental changes in encoding and the capacity to process face information. Journal of Vision, 11.Google Scholar
  52. Yang, C.-T. (2011). Relative saliency in change signal affects perceptual comparison and decision processes in change detection. Journal of Experimental Psychology: Human Perception and Performance, 37, 1708–1728.PubMedGoogle Scholar
  53. Yang, C.-T., Chang, T.-Y., & Wu, C.-J. (2012). Relative change probability affects the decision process of detecting multiple feature changes. Journal of Experimental Psychology: Human Perception and Performance. Advance online publicationGoogle Scholar
  54. Yang, H., Houpt, J. W., Khodadadi, A., & Townsend, J. T. (2011). Revealing the underlying mechanism of implicit race bias. Poster presented at: Midwestern Cognitive Science Meeting. East Lansing, MI.Google Scholar
  55. Yang, C.-T., Hsu, Y.-F., Huang, H.-Y., & Yeh, Y.-Y. (2011b). Relative salience affects the process of detecting changes in orientation and luminance. Acta Psychologica, 138, 377–389.PubMedCrossRefGoogle Scholar
  56. Zehetleitner, M., Krummenacher, J., & Müller, H. J. (2009). The detection of feature singletons defined in two dimensions is based on salience summation, rather than on serial exhaustive architectures. Attention, Perception, & Psychophysics, 71, 1739–1759.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Joseph W. Houpt
    • 1
  • Leslie M. Blaha
    • 2
  • John P. McIntire
    • 2
  • Paul R. Havig
    • 2
  • James T. Townsend
    • 3
  1. 1.Department of PsychologyWright State UniversityDaytonUSA
  2. 2.U.S. Air Force Research Laboratory, Wright-Patterson Air Force BaseWright-Patterson AFBUSA
  3. 3.Indiana UniversityBloomingtonUSA

Personalised recommendations