Advertisement

Working memory training in typically developing children: A multilevel meta-analysis

Abstract

Working memory (WM) training in typically developing (TD) children aims to enhance not only performance in memory tasks but also other domain-general cognitive skills, such as fluid intelligence. These benefits are then believed to positively affect academic achievement. Despite the numerous studies carried out, researchers still disagree over the real benefits of WM training. With this meta-analysis (m = 41, k = 393, N = 2,375), we intended to resolve the discrepancies by focusing on the potential sources of within-study and between-study true heterogeneity. Small to medium effects were observed in memory tasks (i.e., near transfer). The size of these effects was proportional to the similarity between the training task and the outcome measure. By contrast, far-transfer measures of cognitive ability (e.g., intelligence) and academic achievement (mathematics and language ability) were essentially unaffected by the training programs, especially when the studies implemented active controls (\( \overline{g} \) = 0.001, SE = 0.055, p = .982, τ2 = 0.000). Crucially, all the models exhibited a null or low amount of true heterogeneity, which was wholly explained by the type of controls (nonactive vs. active) and by statistical artifacts, in contrast to the claim that this field has produced mixed results. Since the empirical evidence shows the absence of both generalized effects and true heterogeneity, we conclude that there is no reason to keep investing resources in WM training research with TD children.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1

References

  1. Aksayli, N. D., Sala, G., & Gobet, F. (2019). The cognitive and academic benefits of Cogmed: A meta-analysis. Educational Research Review, 29, 229–243. doi:https://doi.org/10.1016/j.edurev.2019.04.003

  2. Baddeley, A. (1992). Working memory. Science, 255, 556–559. doi:https://doi.org/10.1126/science.1736359

  3. Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417–423. doi:https://doi.org/10.1016/S1364-6613(00)01538-2

  4. Burgoyne, A. P., Hambrick, D. Z., & Altman, E. M. (2019). Is working memory capacity a causal factor in fluid intelligence? Psychonomic Bulletin & Review, 26, 1333–1339. doi:https://doi.org/10.3758/s13423-019-01606-9

  5. Byrne, E. M., Gilbert, R. A., Kievit, R., & Holmes, J., (2019, April 16). Evidence for separate backward recall and n-back working memory factors: A large-scale latent variable analysis. doi:10.31234/osf.io/bkja7

  6. Campbell, D., & Fiske, D. (1959). Convergent and discriminant validation by the multitrait–multimethod matrix. Psychological Bulletin, 56, 81–105. doi:https://doi.org/10.1037/h0046016

  7. Cheung, S. F., & Chan, D. K. (2014). Meta-analyzing dependent correlations: An SPSS macro and an R script. Behavioral Research Methods, 46, 331–345. doi:https://doi.org/10.3758/s13428-013-0386-2

  8. Cowan, N. (2016). Working memory maturation: Can we get at the essence of cognitive growth? Perspective on Psychological Science, 11, 239–264. doi:https://doi.org/10.1177/1745691615621279

  9. Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24, 1158–1170. doi:https://doi.org/10.3758/s13423-016-1191-6

  10. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466. doi:https://doi.org/10.1016/S0022-5371(80)90312-6

  11. Detterman, D. K. (2014). Introduction to the intelligence special issue on the development of expertise: Is ability necessary? Intelligence, 45, 1–5. doi:https://doi.org/10.1016/j.intell.2014.02.004

  12. Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel plot based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 276–284. doi:https://doi.org/10.1111/j.0006-341X.2000.00455.x

  13. Engle, R. W. (2018). Working memory and executive attention: A revisit. Perspectives on Psychological Science, 13, 190–193. doi:https://doi.org/10.1177/1745691617720478

  14. Eysenck, H. J. (1994). Systematic reviews: Meta-analysis and its problems. BMJ, 309, 789. doi:https://doi.org/10.1136/bmj.309.6957.789

  15. Fisher, Z., Tipton, E., & Zhipeng, H. (2017). Package “robumeta.” Retrieved from https://cran.r-project.org/web/packages/robumeta/robumeta.pdf

  16. Gathercole, S. E., Dunning, D. L., Holmes, J., & Norris, D. (2019). Working memory training involves learning new skills. Journal of Memory and Language, 105, 19–42. doi:https://doi.org/10.1016/j.jml.2018.10.003

  17. Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40, 177–190. doi:https://doi.org/10.1037/0012-1649.40.2.177

  18. Gobet, F. (2016). Understanding expertise: A multi-disciplinary approach. London, UK: Palgrave/Macmillan.

  19. Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31, 1–40. doi:https://doi.org/10.1006/cogp.1996.0011

  20. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322. doi:https://doi.org/10.1038/nn1014

  21. Halford, G. S., Cowan, N., & Andrews, G. (2007). Separating cognitive capacity from knowledge: A new hypothesis. Trends in Cognitive Sciences, 11, 236–242. doi:https://doi.org/10.1016/j.tics.2007.04.001

  22. Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1, 39–65. doi:https://doi.org/10.1002/jrsm.5

  23. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105, 6829–6833. doi:https://doi.org/10.1073/pnas.0801268105

  24. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108, 10081–10086. doi:https://doi.org/10.1073/pnas.1103228108

  25. Jones, G., Gobet, F., & Pine, J. M. (2007). Linking working memory and long-term memory: A computational model of the learning of new words. Developmental Science, 10, 853–873. doi:https://doi.org/10.1111/j.1467-7687.2007.00638.x

  26. Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 66–71. doi:https://doi.org/10.1037/0033-2909.131.1.66

  27. Lebedev, A. V., Nilsson, J., & Lövdén, M. (2018). Working memory and reasoning benefit from different modes of large-scale brain dynamics in healthy older adults. Journal of Cognitive Neuroscience, 30, 1033–1046. doi:https://doi.org/10.1162/jocn_a_01260

  28. McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1–10. doi:https://doi.org/10.1016/j.intell.2008.08.004

  29. Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of far-transfer: Evidence from a meta-analytic review. Perspective on Psychological Science, 11, 512–534. doi:https://doi.org/10.1177/1745691616635612

  30. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151, 264–269. doi:https://doi.org/10.7326/0003-4819-151-4-200908180-00135

  31. Munafò, M. R., & Smith, G. D. (2018). Robust research needs many lines of evidence. Nature, 553, 399–401. doi:https://doi.org/10.1038/d41586-018-01023-3

  32. Noack, H., Lövdén, M., Schmiedek, F., & Lindenberger, U. (2009). Cognitive plasticity in adulthood and old age: Gauging the generality of cognitive intervention effects. Restorative Neurology and Neuroscience, 27, 435–453. doi:https://doi.org/10.3233/RNN-2009-0496

  33. Peng, P., Barnes, M., Wang, C., Wang, W., Li, S., Swanson, H. L., . . . Tao, S. (2018). A meta-analysis on the relation between reading and working memory. Psychological Bulletin, 144, 48–76. doi:https://doi.org/10.1037/bul0000124

  34. Pergher, V., Shalchy, M. A., Pahor, A., Van Hulle, M. M, Jaeggi, S. M., & Seitz, A. R. (2019). Divergent research methods limit understanding of working memory training. Journal of Cognitive Enhancement. Advance online publication. doi:https://doi.org/10.1007/s41465-019-00134-7

  35. Pustejovsky, J. E., & Rodgers, M. A. (2019). Testing for funnel plot asymmetry of standardized mean differences. Research Synthesis Methods, 10, 57–71. doi:https://doi.org/10.1002/jrsm.1332

  36. Redick, T. S., & Lindsey, D. R. B. (2013). Complex span and n-back measures of working memory: A meta-analysis. Psychonomic Bulletin & Review, 20, 1102–1113. doi:https://doi.org/10.3758/s13423-013-0453-9

  37. Sala, G., Aksayli, N. D., Tatlidil, K. S., Gondo, Y., & Gobet, F. (2019a). Working memory training does not enhance older adults’ cognitive skills: A comprehensive meta-analysis. Intelligence, 77, 101386. doi: https://doi.org/10.1016/j.intell.2019.101386.

  38. Sala, G., Aksayli, N. D., Tatlidil, K. S., Tatsumi, T., Gondo, Y., & Gobet, F. (2019b). Near and far transfer in cognitive training: A second-order meta-analysis. Collabra: Psychology, 5, 18. doi:https://doi.org/10.1525/collabra.203

  39. Sala, G., & Gobet, F. (2017). Working memory training in typically developing children: A meta-analysis of the available evidence. Developmental Psychology, 53, 671–685. doi:https://doi.org/10.1037/dev0000265

  40. Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. Trends in Cognitive Sciences, 23, 9–20. doi:https://doi.org/10.1016/j.tics.2018.10.004

  41. Schmidt, F. L. (2010). Detecting and correcting the lies that data tell. Perspectives on Psychological Science, 5, 233–242. doi:https://doi.org/10.1177/1745691610369339

  42. Schmidt, F. L. (2017). Beyond questionable research methods: The role of omitted relevant research in the credibility of research. Archives of Scientific Psychology, 5, 32–41. doi:https://doi.org/10.1037/arc0000033

  43. Schmidt, F. L., & Hunter, J. E. (2015). Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.). Newbury Park, CA: Sage.

  44. Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012a). Cogmed working memory training: Does the evidence support the claims? Journal of Applied Research in Memory and Cognition, 1, 185–193. doi:https://doi.org/10.1016/j.jarmac.2012.06.003

  45. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012b). Is working memory training effective? Psychological Bulletin, 138, 628–654. doi:https://doi.org/10.1037/a0027473

  46. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S.E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17, 103–186. doi:https://doi.org/10.1177/1529100616661983

  47. Strobach, T., & Karbach, J. (Eds.). (2016). Cognitive training: An overview of features and applications. New York, NY: Springer.

  48. Süß, H. M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability—and a little bit more. Intelligence, 30, 261–288. doi:https://doi.org/10.1016/S0160-2896(01)00100-3

  49. Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review, 120, 439–471. doi:https://doi.org/10.1037/a0033138

  50. Taatgen, N. A. (2016). Theoretical models of training and transfer effects. In T. Strobach & J. Karbach (Eds.), Cognitive training: An overview of features and applications (pp. 19–29). Cham, Switzerland: Springer.

  51. Tanner-Smith, E. E., & Tipton, E. (2014). Robust variance estimation with dependent effect sizes: Practical considerations including a software tutorial in Stata and SPSS. Research Synthesis Methods, 5, 13–30. doi:https://doi.org/10.1002/jrsm.1091

  52. Tanner-Smith, E. E., Tipton, E., & Polanin, J. R. (2016). Handling complex meta-analytic data structures using robust variance estimates: A tutorial in R. Journal of Developmental and Life-Course Criminology, 2, 85–112. doi:https://doi.org/10.1007/s40865-016-0026-5

  53. Vevea, J. L., & Woods, C. M. (2005). Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. Psychological Methods, 10, 428–443. doi:https://doi.org/10.1037/1082-989X.10.4.428

  54. Viechtbauer, W. (2010). Conducting meta-analysis in R with the metafor package. Journal of Statistical Software, 36, 1–48. Retrieved from http://brieger.esalq.usp.br/CRAN/web/packages/metafor/vignettes/metafor.pdf

  55. Viechtbauer, W., & Cheung, M. W. L. (2010). Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods, 1, 112–125. doi:https://doi.org/10.1002/jrsm.11

  56. Wai, J., Brown, M. I., & Chabris, C. F. (2018). Using standardized test scores to include general cognitive ability in education research and policy. Journal of Intelligence, 6, 37. doi:https://doi.org/10.3390/jintelligence6030037

  57. Westerberg, H., Hirvikoski, T., Forssberg, H., & Klingberg, T. (2004). Visuo-spatial working memory span: A sensitive measure of cognitive deficits in children with ADHD. Child Neuropsychology, 10, 155–161. doi:https://doi.org/10.1080/09297040490911014

Download references

Acknowledgments

The support of the Japan Society for the Promotion of Science [to G.S.; Grant No. 17F17313] is gratefully acknowledged.

Data availability statement

The data supporting the findings of this study are openly available at the Open Science Foundation, at doi:10.17605/OSF.IO/BW8PG.

Author information

Correspondence to Giovanni Sala.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

ESM 2

(DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sala, G., Gobet, F. Working memory training in typically developing children: A multilevel meta-analysis. Psychon Bull Rev (2020). https://doi.org/10.3758/s13423-019-01681-y

Download citation

Keywords

  • Academic achievement
  • Cognitive enhancement
  • Cognitive training
  • Meta-analysis
  • Transfer
  • Working memory training