Advertisement

Psychonomic Bulletin & Review

, Volume 26, Issue 2, pp 559–568 | Cite as

Reward supports flexible orienting of attention to category information and influences subsequent memory

  • Jia-Hou Poh
  • Stijn A. A. Massar
  • S. Azrin Jamaluddin
  • Michael W. L. CheeEmail author
Brief Report

Abstract

Preparatory control of attention facilitates the efficient processing and encoding of an expected stimulus. However, this can occur at the expense of increasing the processing cost of unexpected stimuli. Preparatory control can be influenced by motivational factors, such as the expectation of a reward. Interestingly, expectation of a high reward can increase target processing, as well as reduce the cost associated with reorienting. Using a semantic cueing paradigm, we examined the interaction of reward expectation and cue-validity on semantic judgment performance and subsequent memory. Preparatory attention was assessed with pupillometry. Valid category cueing was associated with better semantic judgment performance and better subsequent memory compared to invalidly cued items. Higher reward also resulted in a larger pre-target pupil diameter, which could be indicative of increased preparatory task engagement or arousal. Critically, higher reward also reduced reorienting cost in both semantic judgment and subsequent memory performance. Our findings suggest that reward expectation can facilitate the effective control of preparatory attention for semantic information, and can support optimal goal-directed behavior based on changing task demands.

Keywords

Reward Category-cueing Preparatory attention Reorienting Memory Pupillometry 

Notes

Author note

This work was supported by a grant awarded to Dr. Michael Chee from the National Medical Research Council, Singapore (NMRC/STaR/0015/2013). Special thanks to Karen Sasmita for assistance with data collection and data visualization, and Nicholas Chee for assistance with data collection.

Supplementary material

13423_2019_1595_MOESM1_ESM.docx (145 kb)
ESM 1 (DOCX 145 kb)

References

  1. Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507–517.  https://doi.org/10.1016/j.neuron.2006.03.036 CrossRefPubMedGoogle Scholar
  2. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.  https://doi.org/10.1016/j.jml.2007.12.005 CrossRefGoogle Scholar
  3. Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.  https://doi.org/10.18637/jss.v067.i01
  4. Boehler, C. N., Schevernels, H., Hopf, J. M., Stoppel, C. M., & Krebs, R. M. (2014). Reward prospect rapidly speeds up response inhibition via reactive control. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 593–609.  https://doi.org/10.3758/s13415-014-0251-5 CrossRefGoogle Scholar
  5. Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602–607.  https://doi.org/10.1111/j.1469-8986.2008.00654.x CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.  https://doi.org/10.1163/156856897X00357 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bucker, B., & Theeuwes, J. (2014). The effect of reward on orienting and reorienting in exogenous cuing. Cognitive, Affective & Behavioral Neuroscience, 14(2), 635–646.  https://doi.org/10.3758/s13415-014-0278-7 CrossRefGoogle Scholar
  8. Chiew, K. S., & Braver, T. S. (2011). Positive affect versus reward: Emotional and motivational influences on cognitive control. Frontiers in Psychology, 2, 279.  https://doi.org/10.3389/fpsyg.2011.00279 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chiew, K. S., & Braver, T. S. (2013). Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. Frontiers in Psychology, 4, 15.  https://doi.org/10.3389/fpsyg.2013.00015 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chiew, K. S., Stanek, J. K., & Adcock, R. A. (2016). Reward anticipation dynamics during cognitive control and episodic encoding: Implications for dopamine. Frontiers in Human Neuroscience, 10, 555.  https://doi.org/10.3389/fnhum.2016.00555 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Coull, J. T., Frith, C. D., Büchel, C., & Nobre, A. C. (2000). Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 38(6), 808–819.  https://doi.org/10.1016/S0028-3932(99)00132-3 CrossRefPubMedGoogle Scholar
  12. Coull, J. T., & Nobre, A. C. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 18(2), 137–144.  https://doi.org/10.1016/j.conb.2008.07.011 CrossRefPubMedGoogle Scholar
  13. Cristescu, T. C., Devlin, J. T., & Nobre, A. C. (2006). Orienting attention to semantic categories. NeuroImage, 33(4), 1178–1187.  https://doi.org/10.1016/j.neuroimage.2006.08.017 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cristescu, T. C., & Nobre, A. C. (2008). Differential modulation of word recognition by semantic and spatial orienting of attention. Journal of Cognitive Neuroscience, 20(5), 787–801.  https://doi.org/10.1162/jocn.2008.20503 CrossRefPubMedGoogle Scholar
  15. Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18, 193–222.  https://doi.org/10.1146/annurev.ne.18.030195.001205 CrossRefPubMedGoogle Scholar
  16. Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113(4), 501–517.  https://doi.org/10.1037/0096-3445.113.4.501 CrossRefGoogle Scholar
  17. Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Frontiers in Human Neuroscience, 3, 4.  https://doi.org/10.3389/neuro.09.004.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Engelmann, J. B., & Pessoa, L. (2007). Motivation sharpens exogenous spatial attention. Emotion, 7(3), 668–674.  https://doi.org/10.1037/1528-3542.7.3.668 CrossRefPubMedGoogle Scholar
  19. Gruber, M. J., Ritchey, M., Wang, S. F., Doss, M. K., & Ranganath, C. (2016). Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron, 89(5), 1110–1120.  https://doi.org/10.1016/j.neuron.2016.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gruber, M. J., Watrous, A. J., Ekstrom, A. D., Ranganath, C., & Otten, L. J. (2013). Expected reward modulates encoding-related theta activity before an event. NeuroImage, 64, 68–74.  https://doi.org/10.1016/j.neuroimage.2012.07.064 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Henderson, J. M. (1991). Stimulus discrimination following covert attentional orienting to an exogenous cue. Journal of Experimental Psychology: Human Perception and Performance, 17(1), 91–106.  https://doi.org/10.1037/0096-1523.17.1.91 CrossRefPubMedGoogle Scholar
  22. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154(3756), 1583–1585.  https://doi.org/10.1126/science.154.3756.1583 CrossRefPubMedGoogle Scholar
  23. Kastner, S., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282(5386), 108–111.  https://doi.org/10.1126/science.282.5386.108 CrossRefPubMedGoogle Scholar
  24. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751–61.  https://doi.org/10.1016/S0896-6273(00)80734-5 CrossRefPubMedGoogle Scholar
  25. Lisman, J., Grace, A. A., & Duzel, E. (2011). A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences, 34(10), 536–547.  https://doi.org/10.1016/j.tins.2011.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lupyan, G., & Ward, E. J. (2013). Language can boost otherwise unseen objects into visual awareness. Proceedings of the National Academy of Sciences, 110(35), 14196–14201.  https://doi.org/10.1073/pnas.1303312110 CrossRefGoogle Scholar
  27. Massar, S. A. A., Lim, J., Sasmita, K., & Chee, M. W. L. (2016). Rewards boost sustained attention through higher effort: A value-based decision making approach. Biological Psychology, 120, 21–27.  https://doi.org/10.1016/j.biopsycho.2016.07.019 CrossRefPubMedGoogle Scholar
  28. Massar, S. A. A., Sasmita, K., Lim, J., & Chee, M. W. L. (2018). Motivation alters implicit temporal attention through sustained and transient mechanisms: A behavioral and pupillometric study. Psychophysiology, e13275.  https://doi.org/10.1111/psyp.13275
  29. Murayama, K., & Kitagami, S. (2014). Consolidation power of extrinsic rewards: Reward cues enhance long-term memory for irrelevant past events. Journal of Experimental Psychology: General, 143(1), 15–20.  https://doi.org/10.1037/a0031992 CrossRefGoogle Scholar
  30. Murty, V. P., & Adcock, R. A. (2014). Enriched encoding: Reward motivation organizes cortical networks for hippocampal detection of unexpected events. Cerebral Cortex, 24(8), 2160–2168.  https://doi.org/10.1093/cercor/bht063 CrossRefPubMedGoogle Scholar
  31. Murty, V. P., Tompary, A., Adcock, R. A., & Davachi, L. (2017). Selectivity in postencoding connectivity with high-level visual cortex is associated with reward-motivated memory. The Journal of Neuroscience, 37(3), 537–545.  https://doi.org/10.1523/JNEUROSCI.4032-15.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nobre, A. C. (2001). Orienting attention to instants in time. Neuropsychologia, 39(12), 1317–1328.  https://doi.org/10.1016/S0028-3932(01)00120-8 CrossRefPubMedGoogle Scholar
  33. O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584–587.  https://doi.org/10.1038/44134 CrossRefPubMedGoogle Scholar
  34. Padmala, S., & Pessoa, L. (2014). Motivation versus aversive processing during perception. Emotion, 14(3), 450–454.  https://doi.org/10.1037/a0036112 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Patil, A., Murty, V. P., Dunsmoor, J. E., Phelps, E. A., & Davachi, L. (2017). Reward retroactively enhances memory consolidation for related items. Learning and Memory, 24(1), 65–69.  https://doi.org/10.1101/lm.042978.116 CrossRefPubMedGoogle Scholar
  36. Peelen, M. V., & Kastner, S. (2014). Attention in the real world: Toward understanding its neural basis. Trends in Cognitive Sciences, 18(5), 242–250.  https://doi.org/10.1016/j.tics.2014.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision.  https://doi.org/10.1163/156856897X00366
  38. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.  https://doi.org/10.1080/00335558008248231 CrossRefPubMedGoogle Scholar
  39. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160–174.  https://doi.org/10.1037/0096-3445.109.2.160 CrossRefGoogle Scholar
  40. Savine, A. C., Beck, S. M., Edwards, B. G., Chiew, K. S., & Braver, T. S. (2010). Enhancement of cognitive control by approach and avoidance motivational states. Cognition and Emotion, 24(2), 338–356.  https://doi.org/10.1080/02699930903381564 CrossRefPubMedGoogle Scholar
  41. Sawaki, R., Luck, S. J., & Raymond, J. E. (2015). How attention changes in response to incentives. Journal of Cognitive Neuroscience, 27(11), 2229–2239.  https://doi.org/10.1162/jocn_a_00847 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shen, Y. J., & Chun, M. M. (2011). Increases in rewards promote flexible behavior. Attention, Perception, & Psychophysics, 73(3), 938–952.  https://doi.org/10.3758/s13414-010-0065-7 CrossRefGoogle Scholar
  43. Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–472.  https://doi.org/10.1016/j.tics.2010.08.002 CrossRefPubMedGoogle Scholar
  44. Soon, C. S., Namburi, P., & Chee, M. W. L. (2013). Preparatory patterns of neural activity predict visual category search speed. NeuroImage, 66, 215–222.  https://doi.org/10.1016/j.neuroimage.2012.10.036 CrossRefPubMedGoogle Scholar
  45. Stanek, J. K., Dickerson, K. C., Chiew, K. S., Clement, N. J., & Adcock, R. A. (2018). Expected reward value and reward uncertainty have temporally dissociable effects on memory formation. BioRxiv. Retrieved from https://www.biorxiv.org/content/early/2018/03/11/280164
  46. Stanislaw, H., & Todorov, N. (1999). Calculating of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137–149.  https://doi.org/10.3758/BF03207704 CrossRefGoogle Scholar
  47. Stokes, M., Thompson, R., Nobre, A. C., & Duncan, J. (2009). Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proceedings of the National Academy of Sciences, 106(46), 19569–19574.  https://doi.org/10.1073/pnas.0905306106 CrossRefGoogle Scholar
  48. Sturgeon, R. S., Cooper, L. M., & Howell, R. J. (1989). Pupil response: A psychophysiological measure of fear during analogue desensitization. Perceptual and Motor Skills, 69(3_suppl), 1351–1367.  https://doi.org/10.2466/pms.1989.69.3f.1351 CrossRefPubMedGoogle Scholar
  49. Turk-Browne, N. B., Golomb, J. D., & Chun, M. M. (2013). Complementary attentional components of successful memory encoding. NeuroImage, 66, 553–562.  https://doi.org/10.1016/j.neuroimage.2012.10.053 CrossRefPubMedGoogle Scholar
  50. Uncapher, M. R., Hutchinson, J. B., & Wagner, A. D. (2011). Dissociable effects of top-down and bottom-up attention during episodic encoding. Journal of Neuroscience, 31(35), 12613–12628.  https://doi.org/10.1523/JNEUROSCI.0152-11.2011 CrossRefPubMedGoogle Scholar
  51. van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25(6), 2005–2015.  https://doi.org/10.3758/s13423-018-1432-y CrossRefGoogle Scholar
  52. Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Düzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45(3), 459–467.  https://doi.org/10.1016/j.neuron.2005.01.010 CrossRefPubMedGoogle Scholar
  53. Yi, D. J., Kelley, T. A., Marois, R., & Chun, M. M. (2006). Attentional modulation of repetition attenuation is anatomically dissociable for scenes and faces. Brain Research, 1080(1), 53–62.  https://doi.org/10.1016/j.brainres.2006.01.090 CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Centre for Cognitive NeuroscienceDuke-NUS Medical SchoolSingaporeSingapore
  2. 2.Center for Cognitive NeuroscienceDuke UniversityDurhamUSA

Personalised recommendations