Advertisement

Psychonomic Bulletin & Review

, Volume 26, Issue 2, pp 661–668 | Cite as

Automatic biases in intertemporal choice

  • Wenjia Joyce ZhaoEmail author
  • Adele Diederich
  • Jennifer S. Trueblood
  • Sudeep Bhatia
Brief Report

Abstract

Dual process theories of intertemporal decision making propose that decision makers automatically favor immediate rewards. In this paper, we use a drift diffusion model to implement these theories, and empirically investigate the role of their proposed automatic biases. Our model permits automatic biases in the response process, in the form of a shifted starting point, as well as automatic biases in the evaluation process, in the form of an additive drift rate intercept. We fit our model to individual-level choice and response time data, and find that automatic biases (as measured though the starting point and drift rate intercept in our model) are prevalent in intertemporal choice, but that the type, magnitude, and direction of these biases vary greatly across individuals. Our results pose new challenges for theories of intertemporal choice behavior.

Keywords

Drift diffusion model Intertemporal choice Computational modelling Automatic bias Dual process theories 

Notes

Acknowledgements

A. Diederich received funding from Deutsche Forschungsgemeinschaft DI506/14-1 and DI506/15-1. J. S. Trueblood was supported by National Science Foundation Grant SES-1556325 and by the Alfred P. Sloan Foundation. S. Bhatia received funding from the National Science Foundation grant SES-1626825.

Supplementary material

13423_2019_1579_MOESM1_ESM.docx (402 kb)
ESM 1 (DOCX 401 kb)

References

  1. Burks, S. V., Carpenter, J. P., Goette, L., & Rustichini, A. (2009). Cognitive skills affect economic preferences, strategic behavior, and job attachment. Proceedings of the National Academy of Sciences, 106(19), 7745-7750.CrossRefGoogle Scholar
  2. Dai, J., & Busemeyer, J. R. (2014). A probabilistic, dynamic, and attribute-wise model of intertemporal choice. Journal of Experimental Psychology: General, 143(4), 1489.CrossRefGoogle Scholar
  3. Diederich, A., & Trueblood, J. S. (2018). A dynamic dual process model of risky decision making. Psychological review, 125(2), 270.Google Scholar
  4. Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8(3), 223-241.CrossRefPubMedGoogle Scholar
  5. Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., & Weber, E. U. (2010). Lateral prefrontal cortex and self-control in intertemporal choice. Nature Neuroscience, 13(5), 538-539.CrossRefPubMedGoogle Scholar
  6. Franco-Watkins, A.M., Rickard, T.C., & Pashler, H. (2010) Taxing executive processes does not necessarily increase impulsive decision making. Experimental Psychology, 57(3), 193-201.CrossRefPubMedGoogle Scholar
  7. Gonzalez-Vallejo, C. (2002). Making trade-offs: A probabilistic and context-sensitive model of choice behavior. Psychological Review, 109(1), 137.CrossRefPubMedGoogle Scholar
  8. Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105-2108.CrossRefPubMedGoogle Scholar
  9. Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646-648.CrossRefPubMedGoogle Scholar
  10. Hare, T. A., Hakimi, S., & Rangel, A. (2014). Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting. Frontiers in neuroscience, 8, 50.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lindner, F., & Rose, J. (2017). No need for more time: Intertemporal allocation decisions under time pressure. Journal of Economic Psychology, 60, 53–70.CrossRefGoogle Scholar
  12. Loewenstein, G., O'Donoghue, T., & Bhatia, S. (2015). Modeling the interplay between affect and deliberation. Decision, 2(2), 55.CrossRefGoogle Scholar
  13. McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306(5695), 503-507.CrossRefPubMedGoogle Scholar
  14. O'Donoghue, T., & Rabin, M. (1999). Doing it now or later. American Economic Review, 89(1), 103-124.CrossRefGoogle Scholar
  15. Peters, J., & Büchel, C. (2011). The neural mechanisms of inter-temporal decision-making: understanding variability. Trends in Cognitive Sciences, 15(5), 227-239.CrossRefPubMedGoogle Scholar
  16. Rand, D. G., Greene, J. D., & Nowak, M. A. (2012). Spontaneous giving and calculated greed. Nature, 489(7416), 427-430.CrossRefPubMedGoogle Scholar
  17. Ratcliff, R. (1978). A theory of memory retrieval. Psychological review, 85(2), 59.CrossRefGoogle Scholar
  18. Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Computation, 20(4), 873-922.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347-356.CrossRefGoogle Scholar
  20. Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111(2), 333.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Rodriguez, C. A., Turner, B. M., & McClure, S. M. (2014). Intertemporal choice as discounted value accumulation. PloS one, 9(2), e90138.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rodriguez, C. A., Turner, B. M., Van Zandt, T., & McClure, S. M. (2015). The neural basis of value accumulation in intertemporal choice. European Journal of Neuroscience, 42(5), 2179-2189.CrossRefPubMedGoogle Scholar
  23. Rubinstein, A. (2007). Instinctive and cognitive reasoning: A study of response times. The Economic Journal, 117(523), 1243-1259.CrossRefGoogle Scholar
  24. Scholten, M., & Read, D. (2010). The psychology of intertemporal tradeoffs. Psychological Review, 117(3), 925.CrossRefPubMedGoogle Scholar
  25. Shamosh, N. A., DeYoung, C. G., Green, A. E., Reis, D. L., Johnson, M. R., Conway, A. R., ... Gray, J. R. (2008). Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. Psychological Science, 19(9), 904-911.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583-639. ChicagoCrossRefGoogle Scholar
  27. Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. CUP Archive.Google Scholar
  28. White, C. N., & Poldrack, R. A. (2014). Decomposing bias in different types of simple decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 385.PubMedGoogle Scholar
  29. Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Wenjia Joyce Zhao
    • 1
    Email author
  • Adele Diederich
    • 2
  • Jennifer S. Trueblood
    • 3
  • Sudeep Bhatia
    • 1
  1. 1.University of PennsylvaniaPhiladelphiaUSA
  2. 2.Jacobs UniversityBremenGermany
  3. 3.Vanderbilt UniversityNashvilleUSA

Personalised recommendations