Advertisement

Psychonomic Bulletin & Review

, Volume 26, Issue 2, pp 569–575 | Cite as

Using Rescorla’s truly random control condition to measure truly exogenous covert orienting

  • Mohammad Habibnezhad
  • Michael A. Lawrence
  • Raymond M. KleinEmail author
Brief Report

Abstract

Studies of exogenous covert orienting use peripheral cues (stimuli) that are spatially uninformative about the locations of subsequent targets. When the time course of the cue’s influence on performance is explored (by varying the cue target onset asynchrony; CTOA), a biphasic pattern is usually seen with better performance at the cued location when the CTOA is short (typically attributed to attentional capture) and worse performance at the cued location when the CTOA is long (attributed to inhibition of return). However, while spatially uninformative, these cues (even when a nonaging foreperiod is used) entail a temporal contingency with the subsequent target. Consequently, this so-called capture may reflect an unintended consequence of endogenous allocation of temporal attention. Following Lawrence and Klein (Journal of Experimental Psychology: General, 142(2), 560–572, 2013) we used Rescorla’s (Psychological Review, 74, 71–80, 1967) truly random control condition to ensure that the spatially uninformative peripheral stimuli were temporally completely uninformative. Even such completely uninformative peripheral stimuli generated the prototypical biphasic pattern.

Keywords

Attentional capture Inhibition of return Spatial attention Uninformative cueing Temporal uncertainty 

Notes

Author note

The research described here was supported by an NSERC Discovery Grant to Raymond Klein. The instructions, stimuli, program, data files, and analysis scripts associated with the research presented here are posted at https://osf.io/cz48s.

Supplementary material

13423_2018_1544_MOESM1_ESM.pdf (204 kb)
ESM 1 (PDF 204 kb)

References

  1. Briand, K., & Klein, R. M. (1987). Is Posner's beam the same as Treisman's glue?: on the relationship between visual orienting and feature integration theory. Journal of Experimental Psychology: Human Perception & Performance, 13(2), 228–247.Google Scholar
  2. Chica, A. B., Bartolomeo, P., & Lupiáñez, J. (2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107–123.  https://doi.org/10.1016/j.bbr.2012.09.027 CrossRefGoogle Scholar
  3. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.Google Scholar
  4. Gabay, S., & Henik, A. (2008). The effects of expectancy on inhibition of return. Cognition, 106(3), 1478–1486.CrossRefGoogle Scholar
  5. Gabay, S., & Henik, A. (2010). Temporal expectancy modulates inhibition of return in a discrimination task. Psychonomic Bulletin & Review, 17(1), 47–51.CrossRefGoogle Scholar
  6. Hilchey, M. D., Klein, R. M., & Ivanoff, J. (2012) Perceptual and motor IOR: Components or flavours? Attention, Perception, & Psychophysics, 74(7), 1416–1429.  https://doi.org/10.3758/s13414-012-0332-x CrossRefGoogle Scholar
  7. Hopfinger, J. B., & West, V. M. (2006). Interactions between endogenous and exogenous attention on cortical visual processing. NeuroImage, 31(2), 774–789.  https://doi.org/10.1016/j.neuroimage.2005.12.049 CrossRefGoogle Scholar
  8. Ivanoff, J., & Klein, R. M. (2004). Stimulus-response probability and inhibition of return. Psychonomic Bulletin & Review, 11(3), 542–550.CrossRefGoogle Scholar
  9. Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye movements. In A. D. Long (Ed.), Attention and performance IX ( pp. 187–203). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Klein, R. M. (1994). Perceptual-motor expectancies interact with covert visual orienting under endogenous but not exogenous control. Canadian Journal of Experimental Psychology, 48, 151–166.Google Scholar
  11. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147.CrossRefGoogle Scholar
  12. Klein, R. M. (2009). On the control of attention. Canadian Journal of Experimental Psychology, 63, 240–252.  https://doi.org/10.1037/a0015807 CrossRefGoogle Scholar
  13. Klein, R. M., Dove, M., Ivanoff, J., & Eskes, G. A. (2006). Parametric exploration of the Simon effect across visual space. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 60(2), 112.CrossRefGoogle Scholar
  14. Klein, R. M., & Lawrence, M. A. (2011). On the modes and domains of attention. In M. I. Posner (Ed.), Cognitive neuroscience of attention (2nd ed., pp. 11–28). New York, NY: Guilford Press.Google Scholar
  15. Klein, R. M. & Lawrence, M. A. (2012). Pursuing a productive taxonomy of attention. Presented at a symposium: on the future of attention research and practice: defining, measuring and repairing the networks of attention: an international symposium (Halifax, Canada)Google Scholar
  16. LaBerge, D. L. (1990) Attention. Psychological Science, 1(3), 158–162.CrossRefGoogle Scholar
  17. Lawrence, M. A., & Klein, R. M. (2013). Isolating exogenous and endogenous mechanisms of temporal attention. Journal of Experimental Psychology: General, 142(2), 560–572.  https://doi.org/10.1037/a0029023 CrossRefGoogle Scholar
  18. Milliken, B., Lupiáñez, J., Roberts, M., & Stevanovski, B. (2003). Orienting in space and time: Joint contributions to exogenous spatial cuing effects. Psychonomic Bulletin & Review, 10(4), 877–883.CrossRefGoogle Scholar
  19. Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. Journal of Experimental psychology: Human perception and performance, 15(2), 315–330.Google Scholar
  20. Nickerson, R., & Burnham, D. (1969). Response times with nonaging foreperiods. Journal of Experimental Psychology, 79, 452–457.CrossRefGoogle Scholar
  21. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology 32, 3–25.CrossRefGoogle Scholar
  22. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention and Performance X, 32, 531–556.Google Scholar
  23. Posner, M. I., Rafal, R. D., Choate, L. S., & Vaughan, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211–228.CrossRefGoogle Scholar
  24. Redden, R. S., Hilchey, M. D., & Klein, R. M. (2016) Peripheral stimuli generate different forms of inhibition of return when participants make prosaccades versus antisaccades to them. Attention, Perception, & Psychophysics, 78(8), 2283–2291.CrossRefGoogle Scholar
  25. Rescorla, R. A. (1967). Pavlovian conditioning and its proper control procedures. Psychological Review, 74, 71–80.CrossRefGoogle Scholar
  26. Rescorla, R. A. (2000). Associative changes with a random CS–US relationship. The Quarterly Journal of Experimental Psychology Section B, 53(4b), 325–340.CrossRefGoogle Scholar
  27. Rohenkohl, G., Coull, J. T., & Nobre, A. C. (2011). Behavioural dissociation between exogenous and endogenous temporal orienting of attention. PLoS ONE, 6(1), 1–5.  https://doi.org/10.1371/journal.pone.0014620 CrossRefGoogle Scholar
  28. Samuel, A. G., & Kat, D. (2003). Inhibition of return: A graphical meta-analysis of its time course, and an empirical test of its temporal and spatial properties. Psychonomic Bulletin & Review, 10, 897–906.CrossRefGoogle Scholar
  29. Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulus-response compatibility: An integrated perspective (pp. 31–86). Amsterdam, The Netherlands: North-Holland.Google Scholar
  30. Tipper, C., & Kingstone, A. (2005). Is inhibition of return a reflexive effect?. Cognition, 97(3), B55–B62.CrossRefGoogle Scholar
  31. Urcuioli, P. J., Vu, K. P. L., & Proctor, R. W. (2005). A Simon effect in pigeons. Journal of Experimental Psychology: General, 134(1), 93–107.CrossRefGoogle Scholar
  32. Wang, Z., & Klein, R. M. (2012) Focal spatial attention eliminates inhibition of return. Psychonomic Bulletin & Review, 19, 462–469.CrossRefGoogle Scholar
  33. Wang, Z., Satel, J., Hilchey, M. D., & Klein, R. M. (2012). Averaging saccades are repelled by prior uninformative cues at both short and long intervals. Visual Cognition, 20(7), 825–847.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Mohammad Habibnezhad
    • 1
  • Michael A. Lawrence
    • 1
  • Raymond M. Klein
    • 1
    Email author
  1. 1.Department of Psychology and NeuroscienceDalhousie UniversityHalifaxCanada

Personalised recommendations