Evidence against conflict monitoring and adaptation: An updated review

  • James R. SchmidtEmail author
Theoretical Review


One of the most influential ideas in recent decades in the cognitive psychology literature is conflict monitoring theory. According to this account, each time we experience a conflict (e.g., between a colour word and print colour in the Stroop task), attentional control is upregulated to minimize distraction on subsequent trials. Though influential, evidence purported to support this theoretical model (primarily, proportion congruent and congruency sequence effects) has been frequently criticized. Furious debate has centered on whether or not conflict monitoring does or does not occur and, if so, under which conditions. The present article presents an updated review of this debate. In particular, the article considers new research that either (a) seems particularly damaging for the conflict monitoring view or (b) seems to provide support for the theory. The author argues that new findings of the latter sort are still not compelling, several of which have already-demonstrated confounds and others which are plausibly confounded. Further progress has, to a greater extent than not, provided even stronger support for the position that conflict monitoring is merely an illusion. Instead, the net results can be more coherently understood in terms of (relatively) simpler learning/memory biases unrelated to conflict or attention that confound the key paradigms.


Conflict monitoring Attentional control Contingency learning Temporal learning Binding Congruency sequence effect Gratton effect Proportion congruent effect 



  1. Abrahamse, E., Braem, S., Notebaert, W., & Verguts, T. (2016). Grounding cognitive control in associative learning. Psychological Bulletin, 142, 693–728.CrossRefPubMedGoogle Scholar
  2. Abrahamse, E. L., Duthoo, W., Notebaert, W., & Risko, E. F. (2013). Attention modulation by proportion congruency: The asymmetrical list shifting effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1552–1562.PubMedPubMedCentralGoogle Scholar
  3. Akcay, C., & Hazeltine, E. (2011). Domain-specific conflict adaptation without feature repetitions. Psychonomic Bulletin & Review, 18, 505–511.CrossRefGoogle Scholar
  4. Badre, D., Kayser, A. S., & D’Esposito, M. (2010). Frontal cortex and the discovery of abstract action rules. Neuron, 66, 315–326.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blais, C., & Bunge, S. (2010). Behavioral and neural evidence for item-specific performance monitoring. Journal of Cognitive Neuroscience, 22, 2758–2767.CrossRefPubMedGoogle Scholar
  6. Blais, C., Robidoux, S., Risko, E. F., & Besner, D. (2007). Item-specific adaptation and the conflict-monitoring hypothesis: A computational model. Psychological Review, 114, 1076–1086.CrossRefPubMedGoogle Scholar
  7. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychologcal Review, 108, 624–652.CrossRefGoogle Scholar
  8. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546.CrossRefPubMedGoogle Scholar
  9. Botvinick, M. M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179–181.CrossRefPubMedGoogle Scholar
  10. Bugg, J. M. (2014). Conflict-triggered top-down control: Default mode, last resort, or no such thing? Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 567–587.PubMedPubMedCentralGoogle Scholar
  11. Bugg, J. M. (2015). The relative attractiveness of distractors and targets affects the coming and going of item-specific control: Evidence from flanker tasks. Attention, Perception, & Psychophysics, 77, 373–389.CrossRefGoogle Scholar
  12. Bugg, J. M., & Chanani, S. (2011). List-wide control is not entirely elusive: Evidence from picture–word Stroop. Psychonomic Bulletin & Review, 18, 930–936.CrossRefGoogle Scholar
  13. Bugg, J. M., & Crump, M. J. C. (2012). In support of a distinction between voluntary and stimulus-driven control: A review of the literature on proportion congruent effects. Frontiers in Psychology, 3(367).
  14. Bugg, J. M., & Hutchison, K. A. (2013). Converging evidence for control of color-word Stroop interference at the item level. Journal of Experimental Psychology: Human Perception and Performance, 39, 433–449.PubMedPubMedCentralGoogle Scholar
  15. Bugg, J. M., Jacoby, L. L., & Chanani, S. (2011). Why it is too early to lose control in accounts of item-specific proportion congruency effects. Journal of Experimental Psychology: Human Perception and Performance, 37, 844–859.PubMedPubMedCentralGoogle Scholar
  16. Bugg, J. M., Jacoby, L. L., & Toth, J. P. (2008). Multiple levels of control in the Stroop task. Memory & Cognition, 36, 1484–1494.CrossRefGoogle Scholar
  17. Bugg, J. M., McDaniel, M. A., Scullin, M. K., & Braver, T. S. (2011). Revealing list-level control in the Stroop task by uncovering its benefits and a cost. Journal of Experimental Psychology: Human Perception and Performance, 37, 1595–1606.PubMedPubMedCentralGoogle Scholar
  18. Cañadas, E., Rodríguez-Bailón, R., Milliken, B., & Lupiáñez, J. (2013). Social categories as a context for the allocation of attentional control. Journal of Experimental Psychology: General, 142, 934–943.CrossRefGoogle Scholar
  19. Carter, C. S., Braver, T., Barch, D. M., Botvinick, M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate, error detection and performance monitoring: An event related fMRI study. Journal of Cognitive Neuroscience, 10, 107–107.Google Scholar
  20. Cheesman, J., & Merikle, P. M. (1986). Distinguishing conscious from unconscious perceptual processes. Canadian Journal of Psychology, 40, 343–367.CrossRefPubMedGoogle Scholar
  21. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25, 975–979.CrossRefGoogle Scholar
  22. Cohen, J. D., & Huston, T. A. (1994). Progress in the use of interactive models for understanding attention and performance. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 453–476). Cambridge: MIT Press.Google Scholar
  23. Corballis, P. M., & Gratton, G. (2003). Independent control of processing strategies for different locations in the visual field. Biological Psychology, 64, 191–209.CrossRefPubMedGoogle Scholar
  24. Cosman, J. D., & Vecera, S. P. (2014). Establishment of an attentional set via statistical learning. Journal of Experimental Psychology: Human Perception and Performance, 40, 1–6.PubMedPubMedCentralGoogle Scholar
  25. Crump, M. J. C., Brosowsky, N. P., & Milliken, B. (2017). Reproducing the location-based context-specific proportion congruent effect for frequency unbiased items: A reply to Hutcheon and Spieler (2016). Quarterly Journal of Experimental Psychology, 70, 1792-1807.CrossRefGoogle Scholar
  26. Crump, M. J. C., Gong, Z. Y., & Milliken, B. (2006). The context-specific proportion congruent Stroop effect: Location as a contextual cue. Psychonomic Bulletin & Review, 13, 316-321.CrossRefGoogle Scholar
  27. Crump, M. J. C., & Milliken, B. (2009). The flexibility of context-specific control: Evidence for context-driven generalization of item-specific control settings. Quarterly Journal of Experimental Psychology, 62, 1523–1532.CrossRefGoogle Scholar
  28. Crump, M. J. C., Vaquero, J. M. M., & Milliken, B. (2008). Context-specific learning and control: The roles of awareness, task relevance, and relative salience. Consciousness and Cognition, 17, 22–36.CrossRefPubMedGoogle Scholar
  29. Dishon-Berkovits, M., & Algom, D. (2000). The Stroop effect: It is not the robust phenomenon that you have thought it to be. Memory & Cognition, 28, 1437–1449.CrossRefGoogle Scholar
  30. Dulaney, C. L., & Rogers, W. A. (1994). Mechanisms underlying reduction in Stroop interference with practice for young and old adults. Journal of Experimental Psychology: Learning Memory and Cognition, 20, 470–484.Google Scholar
  31. Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014). The congruency sequence effect 3.0: A critical test of conflict adaptation. PLOS ONE, 9. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12, 374–380.CrossRefGoogle Scholar
  33. Egner, T. (2014). Creatures of habit (and control): A multi-level learning perspective on the modulation of congruency effects. Frontiers in Psychology, 5(1247).
  34. Ellis, N. R., & Dulaney, C. L. (1991). Further evidence for cognitive inertia of persons with mental retardation. American Journal on Mental Retardation, 95, 613–621.Google Scholar
  35. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.CrossRefGoogle Scholar
  36. Forrin, N. D., & MacLeod, C. M. (2018). The influence of contingency proportion on contingency learning. Attention, Perception, & Psychophysics, 80, 155–165.CrossRefGoogle Scholar
  37. Freitas, A. L., Bahar, M., Yang, S., & Banai, R. (2007). Contextual adjustments in cognitive control across tasks. Psychological Science, 18, 1040–1043.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Freitas, A. L., & Clark, S. L. (2015). Generality and specificity in cognitive control: Conflict adaptation within and across selective-attention tasks but not across selective-attention and Simon tasks. Psychological Research, 79, 143–162.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Funes, M. J., Lupiáñez, J., & Humphreys, G. (2010). Analyzing the generality of conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 36, 147–161.PubMedPubMedCentralGoogle Scholar
  40. Gage, G. J., Parikh, H., & Marzullo, T. C. (2008). The cingulate cortex does everything. Annals of Improbable Research, 14(3), 12-15.Google Scholar
  41. Garner, W. R. (1974). The processing of information and structure. Oxford: Erlbaum.Google Scholar
  42. Goldfarb, L., & Henik, A. (2007). Evidence for task conflict in the Stroop effect. Journal of Experimental Psychology: Human Perception and Performance, 33, 1170–1176.PubMedPubMedCentralGoogle Scholar
  43. Grandjean, J., D’Ostilio, K., Fias, W., Phillips, C., Balteau, E., & Degueldre, C. (2013). Exploration of the mechanisms underlying the ISPC effect: Evidence from behavioral and neuroimaging data. Neuropsychologia, 51, 1040–1049.CrossRefPubMedGoogle Scholar
  44. Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480–506.CrossRefGoogle Scholar
  45. Grice, G. R. (1968). Stimulus intensity and response evocation. Psychological Review, 75, 359–373.CrossRefPubMedGoogle Scholar
  46. Grice, G. R., & Hunter, J. J. (1964). Stimulus intensity effects depend upon the type of experimental design. Psychological Review, 71, 247–256.CrossRefPubMedGoogle Scholar
  47. Grinband, J., Savitskaya, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2011a). Conflict, error likelihood, and RT: Response to Brown & Yeung et al. NeuroImage, 57, 320–322.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Grinband, J., Savitskaya, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2011b). The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. NeuroImage, 57, 303–311.CrossRefPubMedGoogle Scholar
  49. Grosjean, M., Rosenbaum, D. A., & Elsinger, C. (2001). Timing and reaction time. Journal of Experimental Psychology: General, 130, 256–272.CrossRefGoogle Scholar
  50. Hazeltine, E., Lightman, E., Schwarb, H., & Schumacher, E. H. (2011). The coundaries of sequential modulations: Evidence for set-level control. Journal of Experimental Psychology: Human Perception and Performance, 37, 1898–1914.PubMedGoogle Scholar
  51. Hazeltine, E., & Mordkoff, J. T. (2014). Resolved but not forgotten: Stroop conflict dredges up the past. Frontiers in Psychology, 5(1327).
  52. Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, 7, 185–207.CrossRefGoogle Scholar
  53. Heinemann, A., Kunde, W., & Kiesel, A. (2009). Context-specific prime-congruency effects: On the role of conscious stimulus representations for cognitive control. Consciousness and Cognition, 18, 966–976.CrossRefPubMedGoogle Scholar
  54. Hintzman, D. L. (1984). Minerva 2: A simulation model of human memory. Behavior Research Methods Instruments & Computers, 16, 96–101.CrossRefGoogle Scholar
  55. Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93, 411–428.CrossRefGoogle Scholar
  56. Hintzman, D. L. (1988). Judgments of frequency and recognition memory in a multiple-trace memory model. Psychological Review, 95, 528–551.CrossRefGoogle Scholar
  57. Holland, P. C. (1992). Occasion setting in Pavlovian conditioning. Psychology of Learning and Motivation: Advances in Research and Theory, 28, 69–125.CrossRefGoogle Scholar
  58. Hommel, B., Proctor, R. W., & Vu, K. P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 1–17.CrossRefPubMedGoogle Scholar
  59. Hubbard, J., Kuhns, D., Schafer, T. A. J., & Mayr, U. (2017). Is conflict adaptation due to active regulation or passive carry-over? Evidence from eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 385–393.PubMedPubMedCentralGoogle Scholar
  60. Hutcheon, T. G., & Spieler, D. H. (2017). Limits on the generalizability of context-driven control. Quarterly Journal of Experimental Psychology, 70, 1292–1304.CrossRefGoogle Scholar
  61. Hutchison, K. A. (2011). The interactive effects of listwide control, item-based control, and working memory capacity on Stroop performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 851–860.PubMedPubMedCentralGoogle Scholar
  62. Jacoby, L. L., Lindsay, D. S., & Hessels, S. (2003). Item-specific control of automatic processes: Stroop process dissociations. Psychonomic Bulletin & Review, 10, 638–644.CrossRefGoogle Scholar
  63. Jiang, Y. H., & Chun, M. M. (2001). Selective attention modulates implicit learning. Quarterly Journal of Experimental Psychology, 54A, 1105–1124.CrossRefGoogle Scholar
  64. Jiménez, L., & Méndez, A. (2014). Even with time, conflict adaptation is not made of expectancies. Frontiers in Psychology, 5, 1042. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kan, I. P., Teubner-Rhodes, S., Drummey, A. B., Nutile, L., Krupa, L., & Novick, J. M. (2013). To adapt or not to adapt: The question of domain-general cognitive control. Cognition, 129, 637–651.CrossRefPubMedGoogle Scholar
  66. Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.CrossRefPubMedGoogle Scholar
  67. Kiesel, A., Kunde, W., & Hoffmann, J. (2006). Evidence for task-specific resolution of response conflict. Psychonomic Bulletin & Review, 13, 800–806.CrossRefGoogle Scholar
  68. Kim, S., & Cho, Y. S. (2014). Congruency sequence effect without feature integration and contingency learning. Acta Psychologica, 149, 60–68.CrossRefPubMedGoogle Scholar
  69. King, J. A., Donkin, C., Korb, F. M., & Egner, T. (2012). Model-based analysis of context-specific cognitive control. Frontiers in Psychology, 3(538).
  70. Kinoshita, S., Forster, K. I., & Mozer, M. C. (2008). Unconscious cognition isn’t that smart: Modulation of masked repetition priming effect in the word naming task. Cognition, 107, 623–649.CrossRefPubMedGoogle Scholar
  71. Kinoshita, S., Mozer, M. C., & Forster, K. I. (2011). Dynamic adaptation to history of trial difficulty explains the effect of congruency proportion on masked priming. Journal of Experimental Psychology: General, 140, 622–636.CrossRefGoogle Scholar
  72. Kleiman, T., Hassin, R. R., & Trope, Y. (2014). The control-freak mind: Stereotypical biases are eliminated following conflict-activated cognitive control. Journal of Experimental Psychology: General, 143, 498–503.CrossRefGoogle Scholar
  73. Kohfeld, D. L. (1968). Stimulus intensity and adaptation level as determinants of simple reaction time. Journal of Experimental Psychology, 76, 468–473.CrossRefPubMedGoogle Scholar
  74. Kunde, W., & Wühr, P. (2006). Sequential modulations of correspondence effects across spatial dimensions and tasks. Memory & Cognition, 34, 356–367.CrossRefGoogle Scholar
  75. Lehle, C., & Hubner, R. (2008). On-the-fly adaptation of selectivity in the flanker task. Psychonomic Bulletin & Review, 15, 814–818.CrossRefGoogle Scholar
  76. Levin, Y., & Tzelgov, J. (2014). Conflict components of the Stroop effect and their “control”. Frontiers in Psychology, 5(463).
  77. Levin, Y., & Tzelgov, J. (2016). Contingency learning is not affected by conflict experience: Evidence from a task conflict-free, item-specific Stroop paradigm. Acta Psychologica, 164, 39–45.CrossRefPubMedGoogle Scholar
  78. Lindsay, D. S., & Jacoby, L. L. (1994). Stroop process dissociations: The relationship between facilitation and interference. Journal of Experimental Psychology: Human Perception and Performance, 20, 219–234.PubMedPubMedCentralGoogle Scholar
  79. Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527.CrossRefGoogle Scholar
  80. Logan, G. D., & Zbrodoff, N. J. (1979). When it helps to be misled: Facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Memory & Cognition, 7, 166–174.CrossRefGoogle Scholar
  81. Logan, G. D., Zbrodoff, N. J., & Williamson, J. (1984). Strategies in the color-word Stroop task. Bulletin of the Psychonomic Society, 22, 135–138.CrossRefGoogle Scholar
  82. Lombardi, C. M., & Hurlbert, S. H. (2009). Misprescription and misuse of one-tailed tests. Austral Ecology, 34, 447–468.Google Scholar
  83. Lorentz, E., McKibben, T., Ekstrand, C., Gould, L., Anton, K., & Borowsky, R. (2016). Disentangling genuine semantic Stroop effects in reading from contingency effects: On the need for two neutral baselines. Frontiers in Psychology, 7(386).
  84. Los, S. A. (1996). On the origin of mixing costs: Exploring information processing in pure and mixed blocks of trials. Acta Psychologica, 94, 145–188.CrossRefGoogle Scholar
  85. Lowe, D. G., & Mitterer, J. O. (1982). Selective and divided attention in a Stroop task. Canadian Journal of Psychology, 36, 684–700.CrossRefPubMedGoogle Scholar
  86. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.CrossRefPubMedGoogle Scholar
  87. Mackintosh, N. J. (1975). A theory of attention: Variations in associability of stimuli with reinforcement. Psychological Review, 82, 276–298.CrossRefGoogle Scholar
  88. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.CrossRefPubMedGoogle Scholar
  89. MacLeod, C. M. (1998). Training on integrated versus separated Stroop tasks: The progression of interference and facilitation. Memory & Cognition, 26, 201–211.CrossRefGoogle Scholar
  90. MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 4, 383–391.CrossRefPubMedGoogle Scholar
  91. Matzel, L. D., Held, F. P., & Miller, R. R. (1988). Information and expression of simultaneous and backward associations: Implications for contiguity theory. Learning and Motivation, 19, 317–344.CrossRefGoogle Scholar
  92. Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450–452.CrossRefPubMedGoogle Scholar
  93. Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207–238.CrossRefGoogle Scholar
  94. Melara, R. D., & Algom, D. (2003). Driven by information: A tectonic theory of Stroop effects. Psychological Review, 110, 422–471.CrossRefPubMedGoogle Scholar
  95. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefPubMedGoogle Scholar
  96. Miller, J. (1987). Priming is not necessary for selective-attention failures: Semantic effects of unattended, unprimed letters. Perception & Psychophysics, 41, 419–434.CrossRefGoogle Scholar
  97. Moray, N. (1959). Attention in dichotic-listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 11, 56–60.CrossRefGoogle Scholar
  98. Mordkoff, J. T. (1996). Selective attention and internal constraints: There is more to the flanker effect than biased contingencies. In A. Kramer, M. G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 483–502). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  99. Mordkoff, J. T. (2012). Observation: Three reasons to avoid having half of the trials be congruent in a four-alternative forced-choice experiment on sequential modulation. Psychonomic Bulletin & Review, 19, 750–757.CrossRefGoogle Scholar
  100. Mordkoff, J. T., & Halterman, R. (2008). Feature integration without visual attention: Evidence from the correlated flankers task. Psychonomic Bulletin & Review, 15, 385–389.CrossRefGoogle Scholar
  101. Mozer, M. C., Colagrosso, M. D., & Huber, D. E. (2002). A rational analysis of cognitive control in a speeded discrimination task. Journal of Cognitive Neuroscience, 51-51.Google Scholar
  102. Mozer, M. C., Kinoshita, S., & Davis, C. (2004). Control of response initiation: Mechanisms of adaptation to recent experience. Proceedings of the twenty sixth annual conference of the Cognitive Science Society (pp. 981–986). Mahwah: Erlbaum.Google Scholar
  103. Musen, G., & Squire, L. R. (1993). Implicit learning of color-word associations using a Stroop paradigm. Journal of Experimental Psychology: Learning Memory and Cognition, 19, 789–798.Google Scholar
  104. Myung, I. J., Kim, C., & Pitt, M. A. (2000). Toward an explanation of the power law artifact: Insights from response surface analysis. Memory & Cognition, 28, 832–840.CrossRefGoogle Scholar
  105. Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1–55). Hillsdale: Erlbaum.Google Scholar
  106. Nosofsky, R. M. (1988a). Exemplar-based accounts of relations between classification, recognition, and typicality. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 700–708.Google Scholar
  107. Nosofsky, R. M. (1988b). Similarity, frequency, and category representations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 54–65.Google Scholar
  108. Ollman, R. T., & Billington, M. J. (1972). The deadline model for simple reaction times. Cognitive Psychology, 3, 311–336.CrossRefGoogle Scholar
  109. Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87, 532–552.CrossRefPubMedGoogle Scholar
  110. Reuss, H., Desender, K., Kiesel, A., & Kunde, W. (2014). Unconscious conflicts in unconscious contexts: The role of awareness and timing in flexible conflict adaptation. Journal of Experimental Psychology: General, 143, 1701–1718.CrossRefGoogle Scholar
  111. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447.CrossRefPubMedGoogle Scholar
  112. Ridderinkhof, K. R., Vandermolen, M. W., & Bashore, T. R. (1995). Limits on the application of additive factors logic: Violations of stage robustness suggest a dual-process architecture to explain flanker effects on target processing. Acta Psychologica, 90, 29–48.CrossRefGoogle Scholar
  113. Ruxton, G. D., & Neuhauser, M. (2010). When should we use one-tailed hypothesis testing? Methods in Ecology and Evolution, 1, 114–117.CrossRefGoogle Scholar
  114. Schmidt, J. R. (2013a). The parallel episodic processing (PEP) model: Dissociating contingency and conflict adaptation in the item-specific proportion congruent paradigm. Acta Psychologica, 142, 119–126.CrossRefPubMedGoogle Scholar
  115. Schmidt, J. R. (2013b). Questioning conflict adaptation: Proportion congruent and Gratton effects reconsidered. Psychonomic Bulletin & Review, 20, 615–630.CrossRefGoogle Scholar
  116. Schmidt, J. R. (2013c). Temporal learning and list-level proportion congruency: Conflict adaptation or learning when to respond? PLOS ONE, 8, e0082320.CrossRefGoogle Scholar
  117. Schmidt, J. R. (2014a). Contingencies and attentional capture: The importance of matching stimulus informativeness in the item-specific proportion congruent task. Frontiers in Psychology, 5(540).
  118. Schmidt, J. R. (2014b). List-level transfer effects in temporal learning: Further complications for the list-level proportion congruent effect. Journal of Cognitive Psychology, 26, 373–385.CrossRefGoogle Scholar
  119. Schmidt, J. R. (2016a). Context-specific proportion congruent effects: An episodic learning account and computational model. Frontiers in Psychology, 7(1806).
  120. Schmidt, J. R. (2016b). Proportion congruency and practice: A contingency learning account of asymmetric list shifting effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1496–1505.PubMedPubMedCentralGoogle Scholar
  121. Schmidt, J. R. (2017). Time-out for conflict monitoring theory: Preventing rhythmic biases eliminates the list-level proportion congruent effect. Canadian Journal of Experimental Psychology, 71, 52–62.CrossRefPubMedGoogle Scholar
  122. Schmidt, J. R. (2018). Best not to bet on the horserace: A comment on Forrin and MacLeod (2017) and a relevant stimulus-response compatibility view of colour-word contingency learning asymmetries. Memory & Cognition, 46, 326–335.CrossRefGoogle Scholar
  123. Schmidt, J. R., Augustinova, M., & De Houwer, J. (2018). Category learning in the colour-word contingency learning paradigm. Psychonomic Bulletin & Review, 25, 658–666.CrossRefGoogle Scholar
  124. Schmidt, J. R., & Besner, D. (2008). The Stroop effect: Why proportion congruent has nothing to do with congruency and everything to do with contingency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 514–523.PubMedPubMedCentralGoogle Scholar
  125. Schmidt, J. R., Crump, M. J. C., Cheesman, J., & Besner, D. (2007). Contingency learning without awareness: Evidence for implicit control. Consciousness and Cognition, 16, 421–435.CrossRefPubMedGoogle Scholar
  126. Schmidt, J. R., & De Houwer, J. (2011). Now you see it, now you don’t: Controlling for contingencies and stimulus repetitions eliminates the Gratton effect. Acta Psychologica, 138, 176–186.CrossRefPubMedGoogle Scholar
  127. Schmidt, J. R., & De Houwer, J. (2016a). Contingency learning tracks with stimulus-response proportion: No evidence of misprediction costs. Experimental Psychology, 63, 79–88.CrossRefPubMedGoogle Scholar
  128. Schmidt, J. R., & De Houwer, J. (2016b). Time course of colour-word contingency learning: Practice curves, pre-exposure benefits, unlearning, and relearning. Learning and Motivation, 56, 15–30.CrossRefGoogle Scholar
  129. Schmidt, J. R., De Houwer, J., & Rothermund, K. (2016). The Parallel Episodic Processing (PEP) Model 2.0: A single computational model of stimulus-response binding, contingency learning, power curves, and mixing costs. Cognitive Psychology, 91, 82–108.CrossRefPubMedGoogle Scholar
  130. Schmidt, J. R., & Lemercier, C. (2018). Context-specific proportion congruent effects: Compound-cue contingency learning in disguise. Quarterly Journal of Experimental Psychology
  131. Schmidt, J. R., Lemercier, C., & De Houwer, J. (2014). Context-specific temporal learning with non-conflict stimuli: Proof-of-principle for a learning account of context-specific proportion congruent effects. Frontiers in Psychology, 5(1241).
  132. Schmidt, J. R., & Liefooghe, B. (2016). Feature integration and task switching: Diminished switch costs after controlling for stimulus, response, and cue repetitions. PLOS ONE, 11, e0151188.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Schmidt, J. R., Liefooghe, B., & De Houwer, J. (2017). An episodic model of task switching effects: Erasing the homunculus from memory. Manuscript in preparation.Google Scholar
  134. Schmidt, J. R., Notebaert, W., & Van den Bussche, E. (2015). Is conflict adaptation an illusion? Frontiers in Psychology, 6(172).
  135. Schmidt, J. R., & Weissman, D. H. (2014). Congruency sequence effects without feature integration or contingency learning confounds. PLOS ONE, 9, e0102337.Google Scholar
  136. Schmidt, J. R., & Weissman, D. H. (2015). Contingent attentional capture triggers the congruency sequence effect. Acta Psychologica, 159, 61–68.CrossRefPubMedGoogle Scholar
  137. Schmidt, J. R., & Weissman, D. H. (2016). Congruency sequence effects and previous response times: Conflict adaptation or temporal learning? Psychological Research, 80, 590–607.CrossRefPubMedGoogle Scholar
  138. Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M., & Dougherty, D. D. (2012). Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature, 488, 218–221.CrossRefPubMedPubMedCentralGoogle Scholar
  139. Simon, J. R., Craft, J. L., & Webster, J. B. (1973). Reactions toward stimulus source: Analysis of correct responses and errors over a five-day period. Journal of Experimental Psychology, 101, 175–178.CrossRefPubMedGoogle Scholar
  140. Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: Effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51, 300–304.CrossRefPubMedGoogle Scholar
  141. Smid, H. G. O. M., Lamain, W., Hogeboom, M. M., Mulder, G., & Mulder, L. J. M. (1991). Psychophysiological evidence for continuous information-transmission between visual-search and response processes. Journal of Experimental Psychology: Human Perception and Performance, 17, 696–714.PubMedPubMedCentralGoogle Scholar
  142. Spapé, M. M., & Hommel, B. (2008). He said, she said: Episodic retrieval induces conflict adaptation in an auditory Stroop task. Psychonomic Bulletin & Review, 15, 1117–1121.CrossRefGoogle Scholar
  143. Spapé, M. M., & Hommel, B. (2014). Sequential modulations of the Simon effect depend on episodic retrieval. Frontiers in Psychology, 5(855).
  144. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.CrossRefGoogle Scholar
  145. Strayer, D. L., & Kramer, A. F. (1994a). Strategies and automaticity: 1. Basic findings and conceptual-framework. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 318–341.Google Scholar
  146. Strayer, D. L., & Kramer, A. F. (1994b). Strategies and automaticity: 2. Dynamic aspects of strategy adjustment. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 342–365.Google Scholar
  147. Stroop, J. R. (1935). Studies on interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–661.CrossRefGoogle Scholar
  148. Sutherland, N. S., & Mackintosh, N. J. (1971). Mechanisms of animal discrimination learning. New York: Academic Press.Google Scholar
  149. Van Duren, L. L., & Sanders, A. F. (1988). On the robustness of the additive factors stage structure in blocked and mixed choice reaction designs. Acta Psychologica, 69, 83–94.CrossRefPubMedGoogle Scholar
  150. van Steenbergen, H., Haasnoot, E., Bocanegra, B. R., Berretty, E. W., & Hommel, B. (2015). Practice explains abolished behavioural adaptation after human dorsal anterior cingulate cortex lesions. Scientific Reports, 5(9721).
  151. Verbruggen, F., & Logan, G. D. (2008). Automatic and controlled response inhibition: Associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology: General, 137, 649–672.CrossRefGoogle Scholar
  152. Verbruggen, F., & Logan, G. D. (2009). Automaticity of cognitive control: Goal priming in response-inhibition paradigms. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1381–1388.PubMedGoogle Scholar
  153. Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: Dealing with specific and nonspecific adaptation. Psychological Review, 115, 518–525.CrossRefPubMedGoogle Scholar
  154. Verguts, T., & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Sciences, 13, 252–257.CrossRefPubMedGoogle Scholar
  155. Weidler, B. J., & Bugg, J. M. (2016). Transfer of location-specific control to untrained locations. Quarterly Journal of Experimental Psychology, 69, 2202–2217.CrossRefGoogle Scholar
  156. Weidler, B. J., Dey, A., & Bugg, J. M. (2018). Attentional control transfers beyond the reference frame. Psychological Research, 1–4.
  157. Weissman, D. H., Colter, K., Drake, B., & Morgan, C. (2015). The congruency sequence effect transfers across different response modes. Acta Psychologica, 161, 86–94.CrossRefGoogle Scholar
  158. Weissman, D. H., Egner, T., Hawks, Z., & Link, J. (2015). The congruency sequence effect emerges when the distracter precedes the target. Acta Psychologica, 156, 8–21.CrossRefPubMedGoogle Scholar
  159. Weissman, D. H., Hawks, Z. W., & Egner, T. (2016). Different levels of learning interact to shape the congruency sequence effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 566–583.Google Scholar
  160. Weissman, D. H., Jiang, J. F., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40, 2022–2037.PubMedPubMedCentralGoogle Scholar
  161. Wendt, M., & Kiesel, A. (2011). Conflict adaptation in time: Foreperiods as contextual cues for attentional adjustment. Psychonomic Bulletin & Review, 18, 910–916.CrossRefGoogle Scholar
  162. Wendt, M., Kluwe, R. H., & Peters, A. (2006). Sequential modulations of interference evoked by processing task-irrelevant stimulus features. Journal of Experimental Psychology: Human Perception and Performance, 32, 644–667.PubMedPubMedCentralGoogle Scholar
  163. Whitehead, P. S., Brewer, G. A., Patwary, N., & Blais, C. (2016). Contingency learning is reduced for high conflict stimuli. Acta Psychologica CrossRefPubMedPubMedCentralGoogle Scholar
  164. Wühr, P., Duthoo, W., & Notebaert, W. (2015). Generalizing attentional control across dimensions and tasks: Evidence from transfer of proportion-congruent effects. Quarterly Journal of Experimental Psychology, 68, 779–801.CrossRefGoogle Scholar
  165. Yeung, N., Cohen, J. D., & Botvinick, M. M. (2011). Errors of interpretation and modeling: A reply to Grinband et al. NeuroImage, 57, 316–319.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Université Bourgogne Franche-ComtéDijonFrance
  2. 2.Ghent University, Department of Experimental Clinical and Health PsychologyGhentBelgium

Personalised recommendations