Psychonomic Bulletin & Review

, Volume 25, Issue 6, pp 2309–2322 | Cite as

Composing lexical versus functional adjectives: Evidence for uniformity in the left temporal lobe

  • Linmin ZhangEmail author
  • Liina Pylkkänen
Brief Report


Featural information (e.g., color or shape) allows interlocutors to focus their attention on the specific items under discussion from the vast set of possibilities in the environment. Intriguingly, when they are used to modify and restrict nouns, adjectives can either carry featural information themselves (e.g., green car) or retrieve featural information from the context (e.g., somebody points at a car and claims that she has the same car or a different car). Do the processing of same/different car and green car share neural correlates? For the composition of nouns with feature-carrying adjectives, prior work revealed early compositional effects (roughly 200 ms after noun onset) in the left anterior temporal lobe. However, although we know that such effects do not extend to cases of numeral quantification, which add no conceptual features to the noun (e.g., two boats), we do not know whether they extend to functional adjectives that themselves introduce no features, but instead reference features in the context. To address this question, we measured magnetoencephalography (MEG) during the processing of five types of noun phrases (NPs): same NPs (e.g., same star), different NPs (e.g., different star), color NPs (e.g., green star), comparative NPs (e.g., larger star), and another NPs (e.g., another star). Our main finding was that between 185 to 240 ms after noun onset, same and different NPs patterned with the color NPs in their elicited left temporal lobe activity, and same NPs even trended toward higher amplitudes than the color NPs. This shows that the mechanism driving combinatory effects in the left temporal cortex does not require the input words to directly name conceptual features, as long as the words reference featural information in the context, and that overlapping neural correlates underlie the composition of featural information from both linguistic and nonlinguistic sources.


Language comprehension Semantics Neuropsychology Psycholinguistics 


  1. Adachi, Y., Shimogawara, M., Higuchi, M., Haruta, Y., & Ochiai, M. (2001). Reduction of non-periodic environmental magnetic noise in MEG measurement by continuously adjusted least squares method. IEEE Transactions on Applied Superconductivity, 11, 669–672. doi: CrossRefGoogle Scholar
  2. Ardila, A., Concha, M., & Rosselli, M. (2000). Angular gyrus syndrome revisited: Acalculia, finger agnosia, right–left disorientation and semantic aphasia. Aphasiology, 14, 743–754.CrossRefGoogle Scholar
  3. Barbieri, E., Aggujaro, S., Molteni, F., & Luzzatti, C. (2015). Does argument structure complexity affect reading? A case study of an Italian agrammatic patient with deep dyslexia. Applied Psycholinguistics, 36, 533–558. doi: CrossRefGoogle Scholar
  4. Barde, L. H. F., Schwartz, M. F., & Thompson-Schill, S. (2006). The role of left inferior frontal gyrus (LIFG) in semantic short-term memory: A comparison of two case studies. Brain and Language, 99, 82–83.CrossRefGoogle Scholar
  5. Bemis, D. K., & Pylkkänen, L. (2011). Simple composition: A magnetoencephalography investigation into the comprehension of minimal linguistic phrases. Journal of Neuroscience, 31, 2801–2814. doi: CrossRefPubMedGoogle Scholar
  6. Bemis, D. K., & Pylkkänen, L. (2013a). Basic linguistic composition recruits the left anterior temporal lobe and left angular gyrus during both listening and reading. Cerebral Cortex, 23, 1859–1973.CrossRefGoogle Scholar
  7. Bemis, D. K., & Pylkkänen, L. (2013b). Flexible composition: MEG evidence for the deployment of basic combinatorial linguistic mechanisms in response to task demands. PLoS ONE, 8, e73949. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ben-Shachar, M., Hendler, T., Kahn, I., Ben-Bashat, D., & Grodzinsky, Y. (2003). The neural reality of syntactic transformations: Evidence from functional magnetic resonance imaging. Psychological Science, 14, 433–440.CrossRefGoogle Scholar
  9. Ben-Shachar, M., Palti, D., & Grodzinsky, Y. (2004). Neural correlates of syntactic movement: Converging evidence from two fMRI experiments. NeuroImage, 21, 1320–1336.CrossRefGoogle Scholar
  10. Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527–536. doi: CrossRefGoogle Scholar
  11. Binney, J. R., Embleton, K. V., Jefferies, E., Parker, G. J. M., & Lambon Ralph, M. A. (2010). The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cerebral Cortex, 20, 2728–2738.CrossRefGoogle Scholar
  12. Blanco-Elorrieta, E., & Pylkkänen, L. (2016). Composition of complex numbers: Delineating the computational role of the left anterior temporal lobe. NeuroImage, 124, 194–203.CrossRefGoogle Scholar
  13. Bonner, M. F., Peelle, J. E., Cook, P. A., & Grossman, M. (2013). Heteromodal conceptual processing in the angular gyrus. NeuroImage, 71, 175–186. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brennan, J., & Pylkkänen, L. (2012). The time-course and spatial distribution of brain activity associated with sentence processing. NeuroImage, 60, 1139–1148.CrossRefGoogle Scholar
  16. Caplan, D., Alpert, N., Waters, G., & Olivieri, A. (2000). Activation of Broca’s area by syntactic processing under conditions of concurrent articulation. Human Brain Mapping, 9, 65–71.CrossRefGoogle Scholar
  17. Caplan, D., Stanczak, L., & Waters, G. (2008). Syntactic and thematic constraint effects on blood oxygenation level dependent signal correlates of comprehension of relative clauses. Journal of Cognitive Neuroscience, 20, 643–656. doi: CrossRefGoogle Scholar
  18. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604–608. doi: CrossRefPubMedGoogle Scholar
  19. Constable, R. T., Pugh, K. R., Berroya, E., Mencl, W. E., Westerveld, M., Ni, W., & Shankweiler, D. (2004). Sentence complexity and input modality effects in sentence comprehension: An fMRI study. NeuroImage, 22, 11–21.CrossRefGoogle Scholar
  20. Cooke, A., Zurif, E. B., DeVita, C., Alsop, D., Koenig, P., Detre, J., . . . Grossman, M. (2002). Neural basis for sentence comprehension: Grammatical and short-term memory components. Human Brain Mapping, 15, 80–94.CrossRefGoogle Scholar
  21. Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., & Halgren, E. (2000). Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26, 55–67.CrossRefGoogle Scholar
  22. Damasio, H., Grabowski, T. J., Tranel, D., Ponto, L. L., Hichwa, R. D., & Damasio, A. R. (2001). Neural correlates of naming actions and of naming spatial relations. NeuroImage, 13, 1053–1064.CrossRefGoogle Scholar
  23. Del Prato, P., & Pylkkänen, L. (2014). MEG evidence for conceptual combination but not numeral quantification in the left anterior temporal lobe during language production. Frontiers in Psychology, 5, 524. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  24. Demonet, J.-F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J.-L., Wise, R., . . . Frackowiak, R. (1992). The anatomy of phonological and semantic processing in normal subjects. Brain, 115, 1753–1768.CrossRefGoogle Scholar
  25. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., . . . Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980.CrossRefGoogle Scholar
  26. de Zubicaray, G. I., Hansen, S., & McMahon, K. L. (2013). Differential processing of thematic and categorical conceptual relations in spoken word production. Journal of Experimental Psychology: General, 142, 131–142. doi: CrossRefGoogle Scholar
  27. Dronkers, N. F., Wiilkins, D. P., Vanvalin, R. D., Redfern, B. B., & Jaeger, J. J. (1994). A reconsideration of the brain-areas involved in the disruption of morphosyntactic comprehension. Brain and Language, 47, 461–463.Google Scholar
  28. Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., . . . Hämäläinen, M. S. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7, 267.Google Scholar
  29. Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., . . . Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. NeuroImage, 86, 446–460.CrossRefGoogle Scholar
  30. Graves, W. W., Binder, J. R., Desai, R. H., Conant, L. L., & Seidenberg, M. S. (2010). Neural correlates of implicit and explicit combinatorial semantic processing. NeuroImage, 53, 638–646.CrossRefGoogle Scholar
  31. Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: Minimum norm estimates. Medical and Biological Engineering and Computing, 32, 35–42.CrossRefGoogle Scholar
  32. Hart, J., & Gordon, B. (1990). Delineation of single-word semantic comprehension deficits in aphasia, with anatomical correlation. Annals of Neurology, 27, 226–231.CrossRefGoogle Scholar
  33. Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E. (1992). Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain, 115, 1783–1806.CrossRefGoogle Scholar
  34. Humphries, C., Binder, J. R., Medler, D., & Liebenthal, E. (2006). Syntactic and semantic modulation of neural activity during auditory sentence comprehension. Journal of Cognitive Neuroscience, 18, 665–679.CrossRefGoogle Scholar
  35. Humphries, C., Binder, J. R., Medler, D. A., & Liebenthal, E. (2007). Time course of semantic processes during sentence comprehension: An fMRI study. NeuroImage, 36, 924–932.CrossRefGoogle Scholar
  36. Humphries, C., Love, T., Swinney, D., & Hickok, G. (2005). Response of anterior temporal cortex to syntactic and prosodic manipulations during sentence processing. Human Brain Mapping, 26, 128–138.CrossRefGoogle Scholar
  37. Humphries, C., Willard, K., Buchsbaum, B., & Hickok, G. (2001). Role of anterior temporal cortex in auditory sentence comprehension: An fMRI study. NeuroReport, 12, 1749–1752.CrossRefGoogle Scholar
  38. Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., & Thurlborn, K. R. (1996). Brain activation modulated by sentence comprehension. Science, 274, 114–116.CrossRefGoogle Scholar
  39. Keller, T. A., Carpenter, P. A., & Just, M. A. (2001). The neural bases of sentence comprehension: A fMRI examination of syntactic and lexical processing. Cerebral Cortex, 11, 223–237.CrossRefGoogle Scholar
  40. Lau, E., Almeida, D., Hines, P. C., & Poeppel, D. (2009). A lexical basis for N400 context effects: Evidence from MEG. Brain and Language, 111, 161–172. doi: CrossRefGoogle Scholar
  41. Leiken, K., McElree, B., & Pylkkänen, L. (2015). Filling predictable and unpredictable gaps, with and without similarity-based interference: Evidence for LIFG effects of dependency processing. Frontiers in Psychology, 6, 1739. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  42. Leiken, L, & Pylkkänen, L. (2014). MEG evidence that the LIFG effect of object extraction requires similarity-based interference. Language, Cognition and Neuroscience, 29, 381–389.CrossRefGoogle Scholar
  43. Lewis, G. A., Poeppel, D., & Murphy, G. L. (2015). The neural bases of taxonomic and thematic conceptual relations: An MEG study. Neuropsychologia, 68, 176–189. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  44. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164, 177–190.CrossRefGoogle Scholar
  45. Martinho, A., & Kacelnik, A. (2016). Ducklings imprint on the relational concept of “same or different.” Science, 353, 286–288.CrossRefGoogle Scholar
  46. Mazoyer, B. M., Tzourio, N., Frak, V., Syrota, A., Murayama, N., Levrier, O., . . . Mehler, J. (1993). The cortical representation of speech. Journal of Cognitive Neuroscience, 5, 467–479.CrossRefGoogle Scholar
  47. Mosher, J. C., Leahy, R. M., & Lewis, P. S. (1999). EEG and MEG: Forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering, 46, 245–259.CrossRefGoogle Scholar
  48. Mummery, C. J., Patterson, K., Price, C. J., Ashburner, J., Frackowiak, R. S. J., & Hodges, J. R. (2000). A voxel-based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory. Annals of Neurology, 47, 36–45.CrossRefGoogle Scholar
  49. Mummery, C. J., Patterson, K., Wise, R. J. S., Vandenbergh, R., Price, C. J., & Hodges, J. R. (1999a). Disrupted temporal lobe connections in semantic dementia. Brain, 122, 61–73.CrossRefGoogle Scholar
  50. Mummery, C. J., Shallice, T., & Price, C. J. (1999b). Dual-process model in semantic priming: A functional imaging perspective. NeuroImage, 9, 516–525.CrossRefGoogle Scholar
  51. Murphy, C., Rueschemeyer, S.-A., Watson, D., Karapanagiotidis, T., Smallwood, J., & Jefferies, E. (2017). Fractionating the anterior temporal lobe: MVPA reveals differential responses to input and conceptual modality. NeuroImage, 147, 19–31.CrossRefGoogle Scholar
  52. Newman, A. J., Pancheva, R., Ozawa, K., Neville, H. J., & Ullman, M. T. (2001). An event-related fMRI study of syntactic and semantic violations. Journal of Psycholinguistic Research, 30, 339–364.CrossRefGoogle Scholar
  53. Noonan, K. A., Jefferies, E., Visser, M., & Lambon Ralph, M. A. (2013). Going beyond inferior prefrontal involvement in semantic control: Evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. Journal of Cognitive Neuroscience, 25, 1824–1850.CrossRefGoogle Scholar
  54. Pallier, C., Devauchelle, A.-D., & Dehaene, S. (2011). Cortical representation of the constituent structure of sentences. Proceedings of the National Academy of Sciences, 108, 2522–2527.CrossRefGoogle Scholar
  55. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8, 976–987. doi: CrossRefPubMedGoogle Scholar
  56. Paulesu, E., Frith, C. D., & Frackowiak, R. S. J. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–345.CrossRefGoogle Scholar
  57. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  58. Poortman, E. B., & Pylkkänen, L. (2016). Adjective conjunction as a window into the LATL’s contribution to conceptual combination. Brain and Language, 160, 50–60. doi: CrossRefGoogle Scholar
  59. Price, A. R., Bonner, M. F., Peelle, J. E., & Grossman, M. (2015). Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. Journal of Neuroscience, 35, 3276–3284.CrossRefGoogle Scholar
  60. Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62–88.CrossRefGoogle Scholar
  61. Rogalsky, C., Matchin, W., & Hickok, G. (2008). Broca’s area, sentence comprehension, and working memory: An fMRI study. Frontiers in Human Neuroscience, 2, 14. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  62. Seghier, M. L. (2013). The angular gyrus multiple functions and multiple subdivisions. The Neuroscientist, 19, 43–61.CrossRefGoogle Scholar
  63. Seghier, M. L., Fagan, E., & Price, C. J. (2011). Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. Journal of Neuroscience, 30, 16809–16817.CrossRefGoogle Scholar
  64. Stowe, L. A., Broere, C. A. J., Paans, A. M. J., Wijers, A. A., Mulder, G., Vaalburg, W., & Zwarts, F. (1998). Localizing components of a complex task: Sentence processing and working memory. NeuroReport, 9, 2995–2999.CrossRefGoogle Scholar
  65. Stromswold, K., Caplan, D., Alpert, N., & Rauch, S. (1996). Localization of syntactic comprehension by positron emission tomography. Brain and Language, 52, 452–473.CrossRefGoogle Scholar
  66. Thompson, C. K., Bonakdarpour, B., Fix, S. C., Blumenfeld, H. K., Parrish, T. B., Gitelman, D. R., & Mesulam, M.-M. (2007). Neural correlates of verb argument structure processing. Journal of Cognitive Neuroscience, 19, 1753–1767. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  67. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, 94, 14792–14797.CrossRefGoogle Scholar
  68. Vandenberghe, R., Nobre, A. C., & Price, C. J. (2002). The response of left temporal cortex to sentences. Journal of Cognitive Neuroscience, 14, 550–560.CrossRefGoogle Scholar
  69. Westerlund, M., Kastner, I., Al Kaabi, M., & Pylkkänen, L. (2015). The LATL as locus of composition: MEG evidence from English and Arabic. Brain and Language, 141, 124–134.CrossRefGoogle Scholar
  70. Westerlund, M., & Pylkkänen, L. (2014). The role of the left anterior temporal lobe in semantic composition vs. semantic memory. Neuropsychologia, 57, 59–70.CrossRefGoogle Scholar
  71. Williams, A., Reddigari, S., & Pylkkänen, L. (2017). Early sensitivity of left perisylvian cortex to relationality in nouns and verbs. Neuropsychologia, 100, 131–143. doi: CrossRefPubMedGoogle Scholar
  72. Zhang, L. (2016). External and internal same: A unified account motivated by attitude reports. Sinn und Bedeutung, 20, 833–850.Google Scholar
  73. Zhang, L., & Pylkkänen, L. (2015). The interplay of composition and concept specificity in the left anterior temporal lobe: An MEG study. NeuroImage, 111, 228–240. doi: CrossRefPubMedGoogle Scholar
  74. Ziegler, J., & Pylkkänen, L. (2016). Scalar adjectives and the temporal unfolding of semantic composition: An MEG investigation. Neuropsychologia, 89, 161–171.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of LinguisticsNew York UniversityNew YorkUSA
  2. 2.New York University ShanghaiShanghaiChina
  3. 3.Department of PsychologyNew York UniversityNew YorkUSA
  4. 4.New York University Abu Dhabi InstituteAbu DhabiUnited Arab Emirates

Personalised recommendations