Psychonomic Bulletin & Review

, Volume 25, Issue 1, pp 102–113 | Cite as

Bayesian inference for psychology, part IV: parameter estimation and Bayes factors

  • Jeffrey N. Rouder
  • Julia M. Haaf
  • Joachim Vandekerckhove
Brief Report

Abstract

In the psychological literature, there are two seemingly different approaches to inference: that from estimation of posterior intervals and that from Bayes factors. We provide an overview of each method and show that a salient difference is the choice of models. The two approaches as commonly practiced can be unified with a certain model specification, now popular in the statistics literature, called spike-and-slab priors. A spike-and-slab prior is a mixture of a null model, the spike, with an effect model, the slab. The estimate of the effect size here is a function of the Bayes factor, showing that estimation and model comparison can be unified. The salient difference is that common Bayes factor approaches provide for privileged consideration of theoretically useful parameter values, such as the value corresponding to the null hypothesis, while estimation approaches do not. Both approaches, either privileging the null or not, are useful depending on the goals of the analyst.

Keywords

Bayesian inference and parameter estimation Bayesian statistics Model selection 

References

  1. Berger, J. O., & Wolpert, R. L. (1988). The likelihood principle 2nd Edn. Hayward: Institute of Mathematical Statistics.Google Scholar
  2. de Finetti, B. (1974) Theory of probability Vol. 1. New York: Wiley.Google Scholar
  3. Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Quantitative Psychology and Assessment. Retrieved from  https://doi.org/10.3389/fpsyg.2014.00781
  4. Donkin, C., Newell, B. R., Kalish, M., Dunn, J. C., & Nosofsky, R. M. (2015). Identifying strategy use in category learning tasks: [a] case for more diagnostic data and models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 933.PubMedGoogle Scholar
  5. Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70, 193–242. Retrieved from  https://doi.org/10.1037/h0044139 CrossRefGoogle Scholar
  6. Etz, A., & Vandekerckhove, J. (in press). Introduction to Bayesian inference for psychology. Psychonomic Bulletin & Review. Retrieved from https://osf.io/preprints/psyarxiv/q46q3.
  7. Gallistel, C. R. (2009). The importance of proving the null. Psychological Review, 116, 439–453. Retrieved from  https://doi.org/10.1037/a0015251 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gelman, A., & Carlin, J. (2017). Some natural solutions to the p value communication problem—and why they won’t work.Google Scholar
  9. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis 2nd Edn. London: Chapman and Hall.Google Scholar
  10. George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88, 881–889.CrossRefGoogle Scholar
  11. Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J., & Kruger, L. (1989) The empire of chance. London: Cambridge.CrossRefGoogle Scholar
  12. Guan, M., & Vandekerckhove, J. (2016). A Bayesian approach to mitigation of publication bias. Psychonomic Bulletin and Review, 23(1), 74–86. Retrieved from https://escholarship.org/uc/item/2682p4tr CrossRefPubMedGoogle Scholar
  13. Jeffreys, H. (1938) Theory of probability. Oxford: Claredon.Google Scholar
  14. Jeffreys, H. (1961). Theory of probability 3rd Edn. New York: Oxford University Press.Google Scholar
  15. Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science, 6, 299–312.CrossRefPubMedGoogle Scholar
  16. Kruschke, J. K. (2012). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General.Google Scholar
  17. Kruschke, J. K. (2014). Doing Bayesian data analysis 2nd Edn. A tutorial with R, JAGS, and Stan. Waltham MA.: Academic Press.Google Scholar
  18. Kruschke, J. K., & Liddell, T. M. (2017). The Bayesian new statistics: hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review. Retrieved from http://link.springer.com/article/10.3758/s13423-016-1221-4
  19. Kruschke, J. K., & Liddell, T. M. (this issue). Bayesian data analysis for newcomers. Psychonomic Bulletin & Review. Retrieved from  https://doi.org/10.3758/s13423-017-1272-1
  20. Lee, M. D., & Wagenmakers, E. -J. (2013) Bayesian cognitive modeling: a practical course. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Lehmann, E. L. (1993). The Fisher, Neyman–Pearson theories of testing hypotheses: one theory or two? Journal of the American Statistical Association, 88, 1242–1249.CrossRefGoogle Scholar
  22. Lehmann, E. L., & Casella, G. (1998). Theory of point estimation 2nd Edn. New York: Springer.Google Scholar
  23. Lindley, D. V. (1957). A statistical paradox. Biometrika, 44, 187–192.CrossRefGoogle Scholar
  24. Lindley, D. V. (1965) Introduction to probability and statistics from a Bayesian point of view, part 2: inference. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. Journal of Mathematical Psychology, 56, 362–375. Retrieved from  https://doi.org/10.1016/j.jmp.2008.03.002 CrossRefGoogle Scholar
  26. Logan, G. D., & Zbrodoff, N. J. (1979). When it helps to be misled: facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Memory & Cognition, 7(3), 166–174.CrossRefGoogle Scholar
  27. MacLeod, C. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109, 163–203.CrossRefPubMedGoogle Scholar
  28. Matzke, D., Boehm, U., & Vandekerckhove, J. (this issue). Bayesian inference for psychology, part III: Parameter estimation in nonstandard models. Psychonomic Bulletin & Review.Google Scholar
  29. Mitchell, T. J., & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83, 1023–1032.CrossRefGoogle Scholar
  30. Morey, R. D., Romeijn, J. -W., & Rouder, J. N. (2016). The philosophy of Bayes factors and the quantification of statistical evidence. Journal of Mathematical Psychology. Retrieved from. http://www.sciencedirect.com/science/article/pii/S0022249615000723
  31. Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hypotheses. Psychological Methods, 16, 406–419. Retrieved from  https://doi.org/10.1037/a0024377 CrossRefPubMedGoogle Scholar
  32. Morey, R. D., Rouder, J. N., & Speckman, P. L. (2009). A truncated-probit item response model for estimating psychophysical thresholds. Psychometrika, 74, 603–618.CrossRefGoogle Scholar
  33. Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163.CrossRefGoogle Scholar
  34. Rouder, J. N. (2016). Roll your own: How to compute Bayes factors for your priors. Retrieved from https://osf.io/preprints/psyarxiv/nvsm5 (Archived blog posts).
  35. Rouder, J. N., Sun, D., Speckman, P. L., Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 587–604.CrossRefGoogle Scholar
  36. Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin and Review, 12, 573–604.CrossRefPubMedGoogle Scholar
  37. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t-tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16, 225–237. Retrieved from  https://doi.org/10.3758/PBR.16.2.225 CrossRefPubMedGoogle Scholar
  38. Rouder, J. N., & Morey, R. D. (2012). Default Bayes factors for model selection in regression. Multivariate Behavioral Research, 47, 877–903. Retrieved from  https://doi.org/10.1080/00273171.2012.734737 CrossRefPubMedGoogle Scholar
  39. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356–374.  https://doi.org/10.1016/j.jmp.2012.08.001 CrossRefGoogle Scholar
  40. Rouder, J. N., Morey, R. D., & Wagenmakers, E. -J. (2016). The interplay between subjectivity, statistical practice, and psychological science. Collabra, 2, 6. Retrieved  https://doi.org/10.1525/collabra.28 CrossRefGoogle Scholar
  41. Ročková, V., & George, E. L. (2014). EMVS: the EM approach to Bayesian variable selection. Journal of the American Statistical Association, 109.Google Scholar
  42. Sanyal, N., & Ferreira, M. A. R. (2012). Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. NeuroImage, 63, 1519–1531.CrossRefPubMedGoogle Scholar
  43. Savage, L. J. (1972). The foundations of statistics 2nd Edn. New York: Dover.Google Scholar
  44. Scott, J. G., & Berger, J. O. (2010). Bayes and empirical Bayes multiplicity adjustment in the variable-selection problem. The Annals of Statistics, 38, 2587–2619.CrossRefGoogle Scholar
  45. Senn, S. (2011). You may believe you are a Bayesian but you are probably wrong. Rationality, Markets and Morals, 2, 48–66.Google Scholar
  46. Vandekerckhove, J. (2014). A cognitive latent variable model for the simultaneous analysis of behavioral and personality data. Journal of Mathematical Psychology, 60, 58–71.CrossRefGoogle Scholar
  47. Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011). Hierarchical diffusion models for two-choice response time. Psychological Methods, 16, 44–62.CrossRefPubMedGoogle Scholar
  48. Wagenmakers, E. -J. (2007). A practical solution to the pervasive problem of p values. Psychonomic Bulletin and Review, 14, 779–804. Retrieved from  https://doi.org/10.3758/BF03194105 CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Jeffrey N. Rouder
    • 1
    • 2
  • Julia M. Haaf
    • 2
  • Joachim Vandekerckhove
    • 1
  1. 1.University of CaliforniaIrvineUSA
  2. 2.University of MissouriColumbiaUSA

Personalised recommendations