Systems Factorial Technology provides new insights on the other-race effect

  • Cheng-Ta Yang
  • Mario Fifić
  • Ting-Yun Chang
  • Daniel R. Little
Brief Report

Abstract

The other-race effect refers to the difficulty of discriminating between faces from ethnic and racial groups other than one’s own. This effect may be caused by a slow, feature-by-feature, analytic process, whereas the discrimination of own-race faces occurs faster and more holistically. However, this distinction has received inconsistent support. To provide a critical test, we employed Systems Factorial Technology (Townsend & Nozawa in Journal of Mathematical Psychology, 39, 321–359, 1995), which is a powerful tool for analyzing the organization of mental networks underlying perceptual processes. We compared Taiwanese participants’ face discriminations of both own-race (Taiwanese woman) and other-race (Caucasian woman) faces according to the faces’ nose-to-mouth separation and eye-to-eye separation. We found evidence for weak holistic processing (parallel processing) coupled with the strong analytic property of a self-terminating stopping rule for own-race faces, in contrast to strong analytic processing (serial self-terminating processing) for other-race faces, supporting the holistic/analytic hypothesis.

Keywords

Other-race effect Holistic/analytic hypothesis Face perception Systems factorial technology 

Notes

Author note

This work was supported by grants from the National Science Council (NSC 102-2628-H-006-001-MY3 to C.-T.Y.) and National Cheng Kung University (an NCKU Rising-Star Top-Notch Project Grant to C.-T.Y.), as well as by Grant ARC DP160102360 to D.R.L.

Supplementary material

13423_2017_1305_MOESM1_ESM.docx (418 kb)
ESM 1(DOCX 417 kb)

References

  1. Amishav, R., & Kimchi, R. (2010). Perceptual integrality of componential and configural information in faces. Psychonomic Bulletin & Review, 17, 743–748. doi:10.3758/PBR.17.5.743 CrossRefGoogle Scholar
  2. Ashby, F. G., Maddox, W. T., & Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimensional scaling or the similarity-choice model. Psychological Science, 5, 144–151.CrossRefGoogle Scholar
  3. Blaha, L. (2017). An examination of task demands on the elicited processing capacity. In D. R. Little, N. Altieri, M. Fifić, & C.-T. Yang (Eds.), Systems factorial technology: A theory driven methodology for the identification of perceptual and cognitive mechanisms. London, UK: Academic Press.Google Scholar
  4. Boduroglu, A., Shah, P., & Nisbett, R. E. (2009). Cultural differences in allocation of attention in visual information processing. Journal of Cross-Cultural Psychology, 40, 349–360.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bukach, C. M., Cottle, J., Ubiwa, J., & Miller, J. (2012). Individuation experience predicts other-race effects in holistic processing for both Caucasian and Black participants. Cognition, 123, 319–324. doi:10.1016/j.cognition.2012.02.007 CrossRefPubMedGoogle Scholar
  6. Chang, T.-Y., Little, D. R., & Yang, C.-T. (2016). Selective attention modulates the effect of target location probability on redundant signal processing. Attention, Perception, & Psychophysics, 78, 1603–1624. doi:10.3758/s13414-016-1127-2 CrossRefGoogle Scholar
  7. Chua, H. F., Boland, J. E., & Nisbett, R. E. (2005). Cultural variation in eye movements during scene perception. Proceedings of the National Academy of Sciences, 102, 12629–12633.CrossRefGoogle Scholar
  8. Curby, K. M., Johnson, K. J., & Tyson, A. (2012). Face to face with emotion: Holistic face processing is modulated by emotional state. Cognition and Emotion, 26, 93–102. doi:10.1080/02699931.2011.555752 CrossRefPubMedGoogle Scholar
  9. DeGutis, J., Mercado, R. J., Wilmer, J., & Rosenblatt, A. (2013). Individual differences in holistic processing predict the own-race advantage in recognition memory. PLoS ONE, 8, e58253.CrossRefPubMedPubMedCentralGoogle Scholar
  10. DeGutis, J., Wilmer, J., Mercado, R. J., & Cohan, S. (2013). Using regression to measure holistic face processing reveals a strong link with face recognition ability. Cognition, 126, 87–100. doi:10.1016/j.cognition.2012.09.004 CrossRefPubMedGoogle Scholar
  11. Dzhafarov, E. N. (1999). Conditionally selective dependence of random variables on external factors. Journal of Mathematical Psychology, 43, 123–157.CrossRefPubMedGoogle Scholar
  12. Estes, W. K., & Maddox, W. T. (2005). Risks of drawing inferences about cognitive processes from model fits to individual versus average performance. Psychonomic Bulletin & Review, 12, 403–408. doi:10.3758/BF03193784 CrossRefGoogle Scholar
  13. Fifić, M., Nosofsky, R. M., & Townsend, J. T. (2008). Information-processing architectures in multidimensional classification: A validation test of the systems factorial technology. Journal of Experimental Psychology: Human Perception and Performance, 34, 356–375. doi:10.1037/0096-1523.34.2.356 PubMedPubMedCentralGoogle Scholar
  14. Fifić, M., & Townsend, J. T. (2010). Information-processing alternatives to holistic perception: Identifying the mechanisms of secondary-level holism within a categorization paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1290–1313. doi:10.1037/a0020123 PubMedPubMedCentralGoogle Scholar
  15. Fitousi, D. (2015). Composite faces are not processed holistically: Evidence from the Garner and redundant target paradigms. Attention, Perception, & Psychophysics, 77, 2037–2060.CrossRefGoogle Scholar
  16. Goh, J. O. S., & Park, D. C. (2009). Culture sculpts the perceptual brain. In Y. C. Joan (Ed.), Progress in brain research (Vol. 178, pp. 95–111). Amsterdam, The Netherlands: Elsevier.Google Scholar
  17. Harrison, S. A., Gauthier, I., Hayward, W. G., & Richler, J. J. (2014). Other-race effects manifest in overall performance, not qualitative processing style. Visual Cognition, 22, 843–864.CrossRefGoogle Scholar
  18. Herrmann, M. J., Schreppel, T., Jäger, D., Koehler, S., Ehlis, A.-C., & Fallgatter, A. J. (2007). The other-race effect for face perception: An event-related potential study. Journal of Neural Transmission, 114, 951.CrossRefPubMedGoogle Scholar
  19. Hole, G. J. (1994). Configurational factors in the perception of unfamiliar faces. Perception, 23, 65–74.CrossRefPubMedGoogle Scholar
  20. Horry, R., Cheong, W., & Brewer, N. (2015). The other-race effect in perception and recognition: Insights from the complete composite task. Journal of Experimental Psychology: Human Perception and Performance, 41, 508–524.PubMedGoogle Scholar
  21. Houpt, J. W., Blaha, L. M., McIntire, J. P., Havig, P. R., & Townsend, J. T. (2014). Systems factorial technology with R. Behavioral Research Methods, 46, 307–330. doi:10.3758/s13428-013-0377-3 CrossRefGoogle Scholar
  22. Houpt, J. W., & Townsend, J. T. (2010). The statistical properties of the survivor interaction contrast. Journal of Mathematical Psychology, 54, 446–453.CrossRefGoogle Scholar
  23. Hugenberg, K., & Corneille, O. (2009). Holistic processing is tuned for in-group faces. Cognitive Science, 33, 1173–1181.CrossRefPubMedGoogle Scholar
  24. Kitayama, S., Duffy, S., Kawamura, T., & Larsen, J. T. (2003). Perceiving an object and its context in different cultures: A cultural look at New Look. Psychological Science, 14, 201–206.CrossRefPubMedGoogle Scholar
  25. Liew, S. X., Howe, P. D. L., & Little, D. R. (2016). The appropriacy of averaging in the study of context effects. Psychonomic Bulletin & Review, 23, 1639–1646. doi:10.3758/s13423-016-1032-7 Google Scholar
  26. Lindsay, D. S., Jack, P. C., & Christian, M. A. (1991). Other-race face perception. Journal of Applied Psychology, 76, 587–589.CrossRefPubMedGoogle Scholar
  27. Little, D. R., Altieri, N., Fifić, M., & Yang, C.-T. (2017). Systems factorial technology: A theory driven methodology for the identification of perceptual and cognitive mechanisms. London, UK: Academic Press.Google Scholar
  28. Little, D. R., Nosofsky, R. M., Donkin, C., & Denton, S. E. (2013). Logical-rules and the classification of integral dimensioned stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 801–820.PubMedGoogle Scholar
  29. Little, D. R., Nosofsky, R. M., & Denton, S. (2011). Response time tests of logical rule-based models of categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1–27. doi:10.1037/a0021330 PubMedPubMedCentralGoogle Scholar
  30. Malpass, R. S., & Kravitz, J. (1969). Recognition for faces of own and other race. Journal of Personality and Social Psychology, 13, 330–334.CrossRefPubMedGoogle Scholar
  31. Masuda, T., & Nisbett, R. E. (2006). Culture and change blindness. Cognitive Science, 30, 381–399.CrossRefPubMedGoogle Scholar
  32. Michel, C., Caldara, R., & Rossion, B. (2006). Same-race faces are perceived more holistically than other-race faces. Visual Cognition, 14, 55–73.CrossRefGoogle Scholar
  33. Michel, C., Corneille, O., & Rossion, B. (2007). Race categorization modulates holistic face encoding. Cognitive Science, 31, 911–924. doi:10.1080/03640210701530805 CrossRefPubMedGoogle Scholar
  34. Michel, C., Rossion, B., Han, J., Chung, C.-S., & Caldara, R. (2006). Holistic processing is finely tuned for faces of one’s own race. Psychological Science, 17, 608–615.CrossRefPubMedGoogle Scholar
  35. Mondloch, C. J., Elms, N., Maurer, D., Rhodes, G., Hayward, W. G., Tanaka, J. W., & Zhou, G. (2010). Processes underlying the cross-race effect: An investigation of holistic, featural, and relational processing of own-race versus other-race faces. Perception, 39, 1065–1085.CrossRefPubMedGoogle Scholar
  36. Moneer, S., Wang, T., & Little, D. R. (2016). The processing architectures of whole-object features: A logical rules approach. Journal of Experimental Psychology: Human Perception and Performance, 42, 1443–1465.PubMedGoogle Scholar
  37. Richler, J. J., Bukach, C. M., & Gauthier, I. (2009). Context influences holistic processing of nonface objects in the composite task. Attention, Perception, & Psychophysics, 71, 530–540. doi:10.3758/APP.71.3.530 CrossRefGoogle Scholar
  38. Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic processing predicts face recognition. Psychological Science, 22, 464–471.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Richler, J. J., & Gauthier, I. (2013). When intuition fails to align with data: A reply to Rossion (2013). Visual Cognition, 21, 254–276.CrossRefGoogle Scholar
  40. Richler, J. J., Palmeri, T. J., & Gauthier, I. (2013). The effects of varying configuration in the composite task support an attentional account of holistic processing. Visual Cognition, 21, 711–715.CrossRefGoogle Scholar
  41. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh, PA: Psychology Software Tools, Inc.Google Scholar
  42. Schweickert, R., Giorgini, M., & Dzhafarov, E. (2000). Selective influence and response time cumulative distribution functions in serial-parallel task networks. Journal of Mathematical Psychology, 44, 504–535.CrossRefPubMedGoogle Scholar
  43. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190. doi:10.1037/0033-295X.84.2.127 CrossRefGoogle Scholar
  44. Tanaka, J. W., Kiefer, M., & Bukach, C. M. (2004). A holistic account of the own-race effect in face recognition: Evidence from a cross-cultural study. Cognition, 93, B1–B9.CrossRefPubMedGoogle Scholar
  45. Tanaka, J. W., & Simonyi, D. (2016). The “parts and wholes” of face recognition: A review of the literature. Quarterly Journal of Experimental Psychology, 69, 1876–1889.CrossRefGoogle Scholar
  46. Townsend, J. T., & Nozawa, G. (1995). Spatio-temporal properties of elementary perception: An investigation of parallel, serial, and coactive theories. Journal of Mathematical Psychology, 39, 321–359. doi:10.1006/jmps.1995.1033 CrossRefGoogle Scholar
  47. Townsend, J. T., & Thomas, R. D. (1994). Stochastic dependencies in parallel and serial models: Effects on systems factorial interactions. Journal of Mathematical Psychology, 38, 1–34. doi:10.1006/jmps.1994.1001 CrossRefGoogle Scholar
  48. Townsend, J. T., & Wenger, M. J. (2004). A theory of interactive parallel processing: New capacity measures and predictions for a response time inequality series. Psychological Review, 111, 1003–1035. doi:10.1037/0033-295X.111.4.1003 CrossRefPubMedGoogle Scholar
  49. Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin & Review, 7, 424–465. doi:10.3758/BF03214357 CrossRefGoogle Scholar
  50. Walker, P. M., & Tanaka, J. W. (2003). An encoding advantage for own-race versus other-race faces. Perception, 32, 1117–1125.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Cheng-Ta Yang
    • 1
  • Mario Fifić
    • 2
  • Ting-Yun Chang
    • 1
    • 3
  • Daniel R. Little
    • 4
  1. 1.Department of PsychologyNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of PsychologyGrand Valley State UniversityAllendaleUSA
  3. 3.Department of PsychologyVanderbilt UniversityNashvilleUSA
  4. 4.Melbourne School of Psychological SciencesMelbourneAustralia

Personalised recommendations