Psychonomic Bulletin & Review

, Volume 25, Issue 1, pp 409–415 | Cite as

Satisfaction in motion: Subsequent search misses are more likely in moving search displays

  • Cary Stothart
  • Andrew Clement
  • James R. Brockmole
Brief Report


People often conduct visual searches in which multiple targets are possible (e.g., medical X-rays can contain multiple abnormalities). In this type of search, observers are more likely to miss a second target after having found a first one (a subsequent search miss). Recent evidence has suggested that this effect may be due to a depletion of cognitive resources from tracking the identities and locations of found targets. Given that tracking moving objects is resource-demanding, would finding a moving target further increase the chances of missing a subsequent one? To address this question, we had participants search for one or more targets hidden among distractors. Subsequent search misses were more likely when the targets and distractors moved throughout the display than when they remained stationary. However, when the found targets were highlighted in a unique color, subsequent search misses were no more likely in moving displays. Together, these results suggest that the effect of movement is likely due to the increased cognitive demands of tracking moving targets. Overall, our findings reveal that activities that involve searching for moving targets (e.g., driving) are more susceptible to subsequent search misses than are those that involve searching for stationary targets (e.g., baggage screening).


Attention Visual search Working memory Object-based attention Satisfaction of search Multiple-target search 


  1. Adamo, S. H., Cain, M. S., & Mitroff, S. R. (2013). Self-induced attentional blink: A cause of errors in multiple-target visual search. Psychological Science, 24, 2569–2574. doi: 10.1177/0956797613497970 CrossRefPubMedGoogle Scholar
  2. Adamo, S. H., Cain, M. S., & Mitroff, S. R. (2015a). Satisfaction at last: Evidence for the “satisfaction” hypothesis for multiple-target search errors. Visual Cognition, 23, 821–825. doi: 10.1080/13506285.2015.1093248 CrossRefGoogle Scholar
  3. Adamo, S. H., Cain, M. S., & Mitroff, S. R. (2015b). Targets need their own personal space: Effects of clutter on multiple-target search accuracy. Perception, 44, 1203–1214. doi: 10.1177/0301006615594921 CrossRefPubMedGoogle Scholar
  4. Adamo, S. H., Cain, M. S., & Mitroff, S. R. (2016). An individual differences approach to multiple-target visual search errors: How search errors relate to different characteristics of attention. Vision Research. doi: 10.1016/j.visres.2016.10.010.
  5. Allen, R., McGeorge, P., Pearson, D., & Milne, A. (2004). Attention and expertise in multiple target tracking. Applied Cognitive Psychology, 18, 337–347. doi: 10.1002/acp.975 CrossRefGoogle Scholar
  6. Allen, R., McGeorge, P., Pearson, D., & Milne, A. (2006). Multiple-target tracking: A role for working memory? Quarterly Journal of Experimental Psychology, 59, 1101–1116. doi: 10.1080/02724980543000097 CrossRefGoogle Scholar
  7. Berbaum, K. S., Franken, E. A., Jr., Dorfman, D. D., Rooholamini, S. A., Coffman, C. E., Conell, S. H., … Kao, S. C. (1991). Time course of satisfaction of search. Investigative Radiology, 26, 640–648.Google Scholar
  8. Berbaum, K. S., Franken, E. A., Jr., Dorfman, D. D., Rooholamini, S. A., Kathol, M. H., Barloon, T. J., … Montgomery, W. J. (1990). Satisfaction of search in diagnostic radiology. Investigative Radiology, 25, 133–140.Google Scholar
  9. Berbaum, K. S., Franklin, E. A., Jr., Caldwell, R. T., & Schartz, K. M. (2010). Satisfaction of search in traditional radiographic imaging. In E. Samei & E. Krupinski (Eds.), The handbook of medical image perception and techniques (pp. 107–138). Cambridge, UK: Cambridge University Press.Google Scholar
  10. Biggs, A. T., Cain, M. S., Clark, K., Darling, E. F., & Mitroff, S. R. (2013). Assessing visual search performance differences between Transportation Security Administration Officers and nonprofessional searchers. Visual Cognition, 21, 330–352. doi: 10.1080/13506285.2013.790329 CrossRefGoogle Scholar
  11. Biggs, A. T., & Mitroff, S. R. (2014). Different predictors of multiple-target search accuracy between non-professional and professional visual searchers. Quarterly Journal of Experimental Psychology, 67, 1335–1348. doi: 10.1080/17470218.2013.859715 CrossRefGoogle Scholar
  12. Cain, M. S., & Mitroff, S. R. (2013). Memory for found targets interferes with subsequent performance in multiple-target visual search. Journal of Experimental Psychology: Human Perception and Performance, 39, 1398–1408. doi: 10.1037/a0030726 PubMedGoogle Scholar
  13. Feria, C. S. (2012). The effects of distractors in multiple object tracking are modulated by the similarity of distractor and target features. Perception, 41, 287–304. doi: 10.1068/p7053 CrossRefPubMedGoogle Scholar
  14. Fleck, M. S., Samei, E., & Mitroff, S. R. (2010). Generalized “satisfaction of search”: Adverse influences on dual-target search accuracy. Journal of Experimental Psychology: Applied, 16, 60–70. doi: 10.1037/a0018629 PubMedGoogle Scholar
  15. Makovski, T., & Jiang, Y. V. (2009). The role of visual working memory in attentive tracking of unique objects. Journal of Experimental Psychology: Human Perception and Performance, 35, 1687–1697. doi: 10.1037/a0016453 PubMedPubMedCentralGoogle Scholar
  16. McCarley, J. S., Kramer, A. F., Boot, W. R., Peterson, M. S., Wang, R. F., & Irwin, D. E. (2006). Oculomotor behavior in visual search for multiple targets. Visual Cognition, 14, 685–703. doi: 10.1080/13506280500194147 CrossRefGoogle Scholar
  17. R Development Core Team. (2016). R: A language and environment for statistical computing (Version 3.3.1) [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Available from Google Scholar
  18. Sall, R. J., & Feng, J. (2016). Better off alone: The presence of one hazard impedes detection of another in simulated traffic scenes. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 60, 1444–1448. doi: 10.1177/1541931213601331 CrossRefGoogle Scholar
  19. Smith, M. J. (1967). Error and variation in diagnostic radiology. Springfield, IL: C. C. Thomas.Google Scholar
  20. Strayer, D. L., Drews, F. A., & Johnston, W. A. (2003). Cell phone-induced failures of visual attention during simulated driving. Journal of Experimental Psychology: Applied, 9, 23–32. doi: 10.1037/1076-898X.9.1.23 PubMedGoogle Scholar
  21. Tombu, M., & Seiffert, A. E. (2008). Attentional costs in multiple-object tracking. Cognition, 108, 1–25. doi: 10.1016/j.cognition.2007.12.014 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Tuddenham, W. J. (1962). Visual search, image organization, and reader error in roentgen diagnosis. Radiology, 78, 694–704.CrossRefPubMedGoogle Scholar
  23. World Health Organization. (2015). Global status report on road safety 2015. Retrieved from

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Cary Stothart
    • 1
    • 2
  • Andrew Clement
    • 1
  • James R. Brockmole
    • 1
  1. 1.University of Notre DameNotre DameUSA
  2. 2.Department of PsychologyUniversity of Notre DameNotre DameUSA

Personalised recommendations