A dual memory theory of the testing effect

Theoretical Review

Abstract

A new theoretical framework for the testing effect—the finding that retrieval practice is usually more effective for learning than are other strategies—is proposed, the empirically supported tenet of which is that separate memories form as a consequence of study and test events. A simplest case quantitative model is derived from that framework for the case of cued recall. With no free parameters, that model predicts both proportion correct in the test condition and the magnitude of the testing effect across 10 experiments conducted in our laboratory, experiments that varied with respect to material type, retention interval, and performance in the restudy condition. The model also provides the first quantitative accounts of (a) the testing effect as a function of performance in the restudy condition, (b) the upper bound magnitude of the testing effect, (c) the effect of correct answer feedback, (d) the testing effect as a function of retention interval for the cases of feedback and no feedback, and (e) the effect of prior learning method on subsequent learning through testing. Candidate accounts of several other core phenomena in the literature, including test-potentiated learning, recognition versus cued recall training effects, cued versus free recall final test effects, and other select transfer effects, are also proposed. Future prospects and relations to other theories are discussed.

Keywords

Retrieval practice Testing effect Test-enhanced learning Memory Quantitative model 

References

  1. Allen, G. A., Mahler, W. A., & Estes, W. K. (1969). Effects of recall tests on long-term retention of paired associates. Journal of Verbal Learning and Verbal Behavior, 8(4), 463–470.CrossRefGoogle Scholar
  2. Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, 2(6), 396–408.CrossRefGoogle Scholar
  3. Arnold, K. M., & McDermott, K. B. (2013). Test-potentiated learning: Distinguishing between direct and indirect effects of tests. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 940–945. doi:10.1037/a0029199 PubMedGoogle Scholar
  4. Atkinson, R. C., & Raugh, M. R. (1975). An application of the mnemonic keyword method to the acquisition of a Russian vocabulary. Journal of Experimental Psychology: Human Learning and Memory, 1(2), 126–133. doi:10.1037/0278-7393.1.2.126 Google Scholar
  5. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (Vol. 2, pp. 89–195). New York, NY: Academic Press.Google Scholar
  6. Baghdady, M., Carnahan, H., Lam, E. W. N., & Woods, N. N. (2014). Test‐enhanced learning and its effect on comprehension and diagnostic accuracy. Medical Education, 48(2), 181–188. doi:10.1111/medu.12302 PubMedCrossRefGoogle Scholar
  7. Bajic, D., & Rickard, T. C. (2009). The temporal dynamics of strategy execution in cognitive skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 113–121.PubMedGoogle Scholar
  8. Barcroft, J. (2007). Effects of opportunities for word retrieval during second language vocabulary learning. Language Learning, 57(1), 35–56. doi:10.1111/j.1467-9922.2007.00398.x CrossRefGoogle Scholar
  9. Benjamin, A. S., & Tullis, J. (2010). What makes distributed practice effective? Cognitive Psychology, 61(3), 228–247.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bishara, A. J., & Jacoby, L. L. (2008). Aging, spaced retrieval, and inflexible memory performance. Psychonomic Bulletin & Review, 15(1), 52–57. doi:10.3758/PBR.15.1.52 CrossRefGoogle Scholar
  11. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, UK: Oxford University Press.Google Scholar
  12. Bjork, R. A. (1975). Retrieval as a memory modifier: An interpretation of negative recency and related phenomena. In R. L. Solso (Ed.), Information processing and cognition: The Loyola Symposium (pp. 123–144). Hillsdale, NJ: Erlbaum.Google Scholar
  13. Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 185–205). Cambridge, MA: MIT Press.Google Scholar
  14. Bouwmeester, S., & Verkoeijen, P. P. J. L. (2011). Why do some children benefit more from testing than others? Gist trace processing to explain the testing effect. Journal of Memory and Language, 65(1), 32–41. doi:10.1016/j.jml.2011.02.005 CrossRefGoogle Scholar
  15. Brewer, G. A., & Unsworth, N. (2012). Individual differences in the effects of retrieval from long-term memory. Journal of Memory and Language, 66(3), 407–415. doi:10.1016/j.jml.2011.12.009 CrossRefGoogle Scholar
  16. Butler, A. C. (2010). Repeated testing produces superior transfer of learning relative to repeated studying. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(5), 1118–1133. doi:10.1037/a0019902 PubMedGoogle Scholar
  17. Butler, A. C., Karpicke, J. D., & Roediger, H. L. (2008). Correcting a meta-cognitive error: Feedback increases retention of low-confidence correct responses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(4), 918–928. doi:10.1037/0278-7393.34.4.918 PubMedGoogle Scholar
  18. Carpenter, S. K. (2009). Cue strength as a moderator of the testing effect: The benefits of elaborative retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(6), 1563–1569. doi:10.1037/a0017021 PubMedGoogle Scholar
  19. Carpenter, S. K. (2012). Testing enhances the transfer of learning. Current Directions in Psychological Science, 21(5), 279–283. doi:10.1177/0963721412452728 CrossRefGoogle Scholar
  20. Carpenter, S. K., & DeLosh, E. L. (2005). Application of the testing and spacing effects to name learning. Applied Cognitive Psychology, 19(5), 619–636. doi:10.1002/acp.1101 CrossRefGoogle Scholar
  21. Carpenter, S. K., & DeLosh, E. L. (2006). Impoverished cue support enhances subsequent retention: Support for the elaborative retrieval explanation of the testing effect. Memory & Cognition, 34(2), 268–276. doi:10.3758/BF03193405 CrossRefGoogle Scholar
  22. Carpenter, S. K., & Kelly, J. W. (2012). Tests enhance retention and transfer of spatial learning. Psychonomic Bulletin & Review, 19(3), 443–448. doi:10.3758/s13423-012-0221-2 CrossRefGoogle Scholar
  23. Carpenter, S. K., Pashler, H., Wixted, J. T., & Vul, E. (2008). The effects of tests on learning and forgetting. Memory & Cognition, 36(2), 438–448. doi:10.3758/MC.36.2.438 CrossRefGoogle Scholar
  24. Carpenter, S. K., Pashler, H., & Cepeda, N. J. (2009). Using tests to enhance 8th grade students’ retention of U.S. history facts. Applied Cognitive Psychology, 23(6), 760–771. doi:10.1002/acp.1507 CrossRefGoogle Scholar
  25. Carpenter, S. K., Pashler, H., & Vul, E. (2006). What types of learning are enhanced by a cued recall test? Psychonomic Bulletin & Review, 13(5), 826–830. doi:10.3758/BF03194004 CrossRefGoogle Scholar
  26. Carrier, M., & Pashler, H. (1992). The influence of retrieval on retention. Memory & Cognition, 20(6), 633–642.CrossRefGoogle Scholar
  27. Coane, J. H. (2013). Retrieval practice and elaborative encoding benefit memory in younger and older adults. Journal of Applied Research in Memory and Cognition, 2(2), 95–100. doi:10.1016/j.jarmac.2013.04.001 CrossRefGoogle Scholar
  28. Coppens, L. C., Verkoeijen, P. P. J. L., & Rikers, R. M. J. P. (2011). Learning adinkra symbols: The effect of testing. Journal of Cognitive Psychology, 23(3), 351–357. doi:10.1080/20445911.2011.507188 CrossRefGoogle Scholar
  29. Crutcher, R. J., & Ericsson, K. A. (2000). The role of mediators in memory retrieval as a function of practice: Controlled mediation to direct access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1297–1317. doi:10.1037/0278-7393.26.5.1297 PubMedGoogle Scholar
  30. Delaney, P. F., Reder, L. M., Staszewski, J. J., & Ritter, F. E. (1998). The strategy-specific nature of improvement: The power law applies by strategy within task. Psychological Science, 9, 1–7.CrossRefGoogle Scholar
  31. Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 4–58. doi:10.1177/1529100612453266 PubMedCrossRefGoogle Scholar
  32. Estes, W. K. (1955). Statistical theory of distributional phenomena in learning. Psychological Review, 62(5), 369–377.PubMedCrossRefGoogle Scholar
  33. Finley, J. R., Benjamin, A. S., Hays, M. J., Bjork, R. A., & Kornell, N. (2011). Benefits of accumulating versus diminishing cues in recall. Journal of Memory and Language, 64(4), 289–298. doi:10.1016/j.jml.2011.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fritz, C. O., Morris, P. E., Nolan, D., & Singleton, J. (2007). Expanding retrieval practice: An effective aid to preschool children’s learning. The Quarterly Journal of Experimental Psychology, 60(7), 991–1004. doi:10.1080/17470210600823595 PubMedCrossRefGoogle Scholar
  35. Gates, A. I. (1917). Recitation as a factor in memorizing. Archives of Psychology, 40.Google Scholar
  36. Glover, J. A. (1989). The “testing” phenomenon: Not gone but nearly forgotten. Journal of Educational Psychology, 81(3), 392399. doi:10.1037/0022-0663.81.3.392 CrossRefGoogle Scholar
  37. Goossens, N. A. M. C., Camp, G., Verkoeijen, P. P. J. L., Tabbers, H. K., & Zwaan, R. A. (2014). The benefit of retrieval practice over elaborative restudy in primary school vocabulary learning. Journal of Applied Research in Memory and Cognition, 3(3), 177182. doi:10.1016/j.jarmac.2014.05.003 CrossRefGoogle Scholar
  38. Goossens, N. A. M. C., Camp, G., Verkoeijen, P. P. J. L., & Tabbers, H. K. (2014). The effect of retrieval practice in primary school vocabulary learning. Applied Cognitive Psychology, 28(1), 135–142. doi:10.1002/acp.2956 CrossRefGoogle Scholar
  39. Halamish, V., & Bjork, R. A. (2011). When does testing enhance retention? A distribution-based interpretation of retrieval as a memory modifier. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(4), 801–812. doi:10.1037/a0023219 PubMedGoogle Scholar
  40. Hays, M. J., Kornell, N., & Bjork, R. A. (2013). When and why a failed test potentiates the effectiveness of subsequent study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(1), 290–296. doi:10.1037/a0028468 PubMedGoogle Scholar
  41. Hintzman, D. L. (2010). How does repetition affect memory? Evidence from judgments of recency. Memory & Cognition, 38(1), 102–115.CrossRefGoogle Scholar
  42. Hintzman, D. L. (2016). Is memory organized by temporal contiguity? Memory & Cognition, 44, 365–375. doi:10.3758/s13421-015-0573-8 CrossRefGoogle Scholar
  43. Hogan, R. M., & Kintsch, W. (1971). Differential effects of study and test trials on long-term recognition and recall. Journal of Verbal Learning and Verbal Behavior, 10(5), 562–567.CrossRefGoogle Scholar
  44. Izawa, C. (1971). The test trial potentiating model. Journal of Mathematical Psychology, 8(2), 200–224.CrossRefGoogle Scholar
  45. Jacoby, L. L., Wahlheim, C. N., & Coane, J. H. (2010). Test-enhanced learning of natural concepts: Effects on recognition memory, classification, and metacognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(6), 1441–1451. doi:10.1037/a0020636 PubMedGoogle Scholar
  46. Jang, Y., Wixted, J. T., Pecher, D., Zeelenberg, R., & Huber, D. E. (2012). Decomposing the interaction between retention interval and study/test practice: The role of retrievability. The Quarterly Journal of Experimental Psychology, 65(5), 962–975. doi:10.1080/17470218.2011.638079 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jönsson, F. U., Kubik, V., Sundqvist, M. L., Todorov, I., & Jonsson, B. (2014). How crucial is the response format for the testing effect? Psychological Research, 78(5), 623–633. doi:10.1007/s00426-013-0522-8 PubMedCrossRefGoogle Scholar
  48. Kang, S. H. K. (2010). Enhancing visuospatial learning: The benefit of retrieval practice. Memory & Cognition, 38(8), 1009–1017. doi:10.3758/MC.38.8.1009 CrossRefGoogle Scholar
  49. Kang, S. H. K., Gollan, T. H., & Pashler, H. (2013). Don’t just repeat after me: Retrieval practice is better than imitation for foreign vocabulary learning. Psychonomic Bulletin & Review, 20(6), 1259–1265. doi:10.3758/s13423-013-0450-z CrossRefGoogle Scholar
  50. Kang, S. H. K., McDermott, K. B., & Roediger, H. L. (2007). Test format and corrective feedback modify the effect of testing on long-term retention. European Journal of Cognitive Psychology, 19(4/5), 528–558. doi:10.1080/09541440601056620 CrossRefGoogle Scholar
  51. Kang, S. H. K., & Pashler, H. (2014). Is the benefit of retrieval practice modulated by motivation? Journal of Applied Research in Memory and Cognition, 3(3), 183–188. doi:10.1016/j.jarmac.2014.05.006 CrossRefGoogle Scholar
  52. Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborate studying with concept mapping. Science, 331(6018), 772–775.PubMedCrossRefGoogle Scholar
  53. Karpicke, J. D., Lehman, M., & Aue, W. R. (2014). Retrieval-based learning: An episodic context account. In The Psychology of Learning and Motivation (Vol. 61, pp. 237–284).Google Scholar
  54. Karpicke, J. D., & Zaromb, F. M. (2010). Retrieval mode distinguishes the testing effect from the generation effect. Journal of Memory and Language, 62(3), 227–239. doi:10.1016/j.jml.2009.11.010 CrossRefGoogle Scholar
  55. Keresztes, A., Kaiser, D., Kovács, G., & Racsmány, M. (2014). Testing promotes long-term learning via stabilizing activation patterns in a large network of brain areas. Cerebral Cortex, 24(11), 3025–3035. doi:10.1093/cercor/bht158 PubMedCrossRefGoogle Scholar
  56. Kole, J. A., & Healy, A. F. (2013). Is retrieval mediated after repeated testing? Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(2), 462–472. doi:10.1037/a0028880 PubMedGoogle Scholar
  57. Kornell, N., Bjork, R. A., & Garcia, M. A. (2011). Why tests appear to prevent forgetting: A distribution-based bifurcation model. Journal of Memory and Language, 65(2), 85–97. doi:10.1016/j.jml.2011.04.002 CrossRefGoogle Scholar
  58. Kornell, N., Klein, P. J., & Rawson, K. A. (2015). Retrieval attempts enhance learning, but retrieval success (versus failure) does not matter. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(1), 283–294. doi:10.1037/a0037850 PubMedGoogle Scholar
  59. Kornell, N., & Son, L. K. (2009). Learners’ choices and beliefs about self-testing. Memory, 17(5), 493–501. doi:10.1080/09658210902832915 PubMedCrossRefGoogle Scholar
  60. Kornell, N., & Vaughn, K. E. (2016). How retrieval attempts affect learning: A review and synthesis. In B. H. Ross (Ed.), Psychology of learning and motivation (Vol. 65, pp. 183–212). Amsterdam, The Netherlands: Elsevier.Google Scholar
  61. Kromann, C. B., Jensen, M. L., & Ringsted, C. (2009). The effect of testing on skills learning. Medical Education, 43(1), 21–27. doi:10.1111/j.1365-2923.2008.03245.x PubMedCrossRefGoogle Scholar
  62. LaPorte, R. E., & Voss, J. F. (1975). Retention of prose materials as a function of postacquisition testing. Journal of Educational Psychology, 67(2), 259–266. doi:10.1037/h0076933 CrossRefGoogle Scholar
  63. Larsen, D. P., Butler, A. C., Lawson, A. L., & Roediger, H. L. (2013). The importance of seeing the patient: Test-enhanced learning with standardized patients and written tests improves clinical application of knowledge. Advances in Health Sciences Education, 18(3), 409–425. doi:10.1007/s10459-012-9379-7 PubMedCrossRefGoogle Scholar
  64. Lipko-Speed, A., Dunlosky, J., & Rawson, K. A. (2014). Does testing with feedback help grade-school children learn key concepts in science? Journal of Applied Research in Memory and Cognition, 3(3), 171–176. doi:10.1016/j.jarmac.2014.04.002 CrossRefGoogle Scholar
  65. McDermott, K. B., Agarwal, P. K., D’Antonio, L., Roediger, H. L., & McDaniel, M. A. (2014). Both multiple-choice and short-answer quizzes enhance later exam performance in middle and high school classes. Journal of Experimental Psychology: Applied, 20(1), 3–21. doi:10.1037/xap0000004 PubMedGoogle Scholar
  66. Metcalfe, J., Kornell, N., & Son, L. K. (2007). A cognitive-science based programme to enhance study efficacy in a high and low risk setting. European Journal of Cognitive Psychology, 19(4/5), 743–768. doi:10.1080/09541440701326063 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Morris, P. E., & Fritz, C. O. (2000). The name game: Using retrieval practice to improve the learning of names. Journal of Experimental Psychology: Applied, 6(2), 124–129. doi:10.1037/1076-898X.6.2.124 PubMedGoogle Scholar
  68. Morris, P. E., & Fritz, C. O. (2002). The improved name game: Better use of expanding retrieval practice. Memory, 10(4), 259–266. doi:10.1080/09658210143000371 PubMedCrossRefGoogle Scholar
  69. Morris, P. E., Fritz, C. O., & Buck, S. (2004). The name game: Acceptability, bonus information and group size. Applied Cognitive Psychology, 18(1), 89–104. doi:10.1002/acp.948 CrossRefGoogle Scholar
  70. Mozer, M. C., Howe, M., & Pashler, H. (2004). Using testing to enhance learning: A comparison of two hypotheses. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the twenty-sixth annual conference of the cognitive science society (pp. 975–980). Mahwah, NJ: Erlbaum.Google Scholar
  71. Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ: Erlbaum.Google Scholar
  72. Pan, S. C., Gopal, A., & Rickard, T. C. (2015). Testing with feedback yields potent, but piecewise, learning of history and biology facts. Journal of Educational Psychology, 107(4). doi:10.1037/edu0000074
  73. Pan, S. C., Pashler, H., Potter, Z. E., & Rickard, T. C. (2015a). Testing enhances learning across a range of episodic memory abilities. Journal of Memory and Language, 83, 53–61. doi:10.1016/j.jml.2015.04.001 CrossRefGoogle Scholar
  74. Pan, S. C., Rubin, B. R., & Rickard, T. C. (2015b). Does testing with feedback improve adult spelling skills relative to copying and reading?. Journal of Experimental Psychology: Applied, 21(4), 356–369. doi:10.1037/xap0000062
  75. Pan, S. C., & Rickard, T. C. (2015). Sleep and motor memory: Is there room for consolidation? Psychological Bulletin, 141(4). doi:10.1037/bul0000009
  76. Pan, S. C., & Rickard, T. C. (2017). Does retrieval practice enhance learning and transfer relative to restudy for term-definition facts?. Journal of Experimental Psychology: Applied. doi:10.1037/xap0000124
  77. Pan, S. C., Wong, C. M., Potter, Z. E., Mejia, J., & Rickard, T. C. (2016). Does test-enhanced learning transfer for triple associates? Memory & Cognition 44(1). doi:10.3758/s13421-015-0547-x
  78. Pashler, H., Cepeda, N. J., Wixted, J. T., & Rohrer, D. (2005). When does feedback facilitate learning of words? Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 3–8. doi:10.1037/0278-7393.31.1.3 PubMedGoogle Scholar
  79. Peterson, D. J., & Mulligan, N. W. (2013). The negative testing effect and multifactor account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1287–1293. doi:10.1037/a0031337 PubMedGoogle Scholar
  80. Putnam, A. L., & Roediger, H. L. (2013). Does response mode affect amount recalled or the magnitude of the testing effect? Memory & Cognition, 41(1), 36–48. doi:10.3758/s13421-012-0245-x CrossRefGoogle Scholar
  81. Pyc, M. A., & Rawson, K. A. (2010). Why testing improves memory: Mediator effectiveness hypothesis. Science, 330(6002), 335.PubMedCrossRefGoogle Scholar
  82. Pyc, M. A., & Rawson, K. A. (2012). Why is test–restudy practice beneficial for memory? An evaluation of the mediator shift hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(3), 737–746. doi:10.1037/a0026166 PubMedGoogle Scholar
  83. Raugh, M. R., & Atkinson, R. C. (1975). A mnemonic method for learning a second-language vocabulary. Journal of Educational Psychology, 67(1), 1–16. doi:10.1037/h0078665 CrossRefGoogle Scholar
  84. Rawson, K. A., & Dunlosky, J. (2011). Optimizing schedules of retrieval practice for durable and efficient learning: How much is enough? Journal of Experimental Psychology: General, 140(3), 283–302. doi:10.1037/a0023956 CrossRefGoogle Scholar
  85. Rickard, T. C. (1997). Bending the power law: A CMPL theory of strategy shifts and the automatization of cognitive skills. Journal of Experimental Psychology: General, 126(3), 288–311. doi:10.1037/0096-3445.126.3.288 CrossRefGoogle Scholar
  86. Rickard, T. C. (2007). Forgetting and learning potentiation: Dual consequences of between-session delays in cognitive skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(2), 297–304. doi:10.1037/0278-7393.33.2.297 PubMedGoogle Scholar
  87. Rickard, T. C., & Bajic, D. (2006). Cued recall from image and sentence memory: A shift from episodic to identical elements representation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 734–748. doi:10.1037/0278-7393.32.4.734 PubMedGoogle Scholar
  88. Roediger, H. L., & Butler, A. C. (2011). The critical role of retrieval practice in long-term retention. Trends in Cognitive Sciences, 15(1), 20–27. doi:10.1016/j.tics.2010.09.003 PubMedCrossRefGoogle Scholar
  89. Roediger, H. L., & Pyc, M. A. (2012). Inexpensive techniques to improve education: Applying cognitive psychology to enhance educational practice. Journal of Applied Research in Memory and Cognition, 1(4), 242–248. doi:10.1016/j.jarmac.2012.09.002 CrossRefGoogle Scholar
  90. Rohrer, D., Taylor, K., & Sholar, B. (2010). Tests enhance the transfer of learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(1), 233–239. doi:10.1037/a0017678 PubMedGoogle Scholar
  91. Ross, B. H., & Bower, G. H. (1981). Comparisons of models of associative recall. Memory & Cognition, 9(1), 1–16.CrossRefGoogle Scholar
  92. Rowland, C. A. (2014). The effect of testing versus restudy on retention: A meta-analytic review of the testing effect. Psychological Bulletin, 140(6), 1432–1463. doi:10.1037/a0037559 PubMedCrossRefGoogle Scholar
  93. Rowland, C. A., & DeLosh, E. L. (2015). Mnemonic benefits of retrieval practice at short retention intervals. Memory, 23(3), 403–419. doi:10.1080/09658211.2014.889710 PubMedCrossRefGoogle Scholar
  94. Smith, M. A., Roediger, H. L., & Karpicke, J. D. (2013). Covert retrieval practice benefits retention as much as overt retrieval practice. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(6), 1712–1725. doi:10.1037/a0033569 PubMedGoogle Scholar
  95. Snodgrass, J. G., & Townsend, J. T. (1980). Comparing parallel and serial models: Theory and implementation. Journal of Experimental Psychology: Human Perception and Performance, 6(2), 330–354.Google Scholar
  96. Storm, B. C., Friedman, M. C., Murayama, K., & Bjork, R. A. (2014). On the transfer of prior tests or study events to subsequent study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 115–124. doi:10.1037/a0034252 PubMedGoogle Scholar
  97. Sumowski, J. F., Chiaravalloti, N., & DeLuca, J. (2010). Retrieval practice improves memory in multiple sclerosis: Clinical application of the testing effect. Neuropsychology, 24(2), 267–272. doi:10.1037/a0017533 PubMedCrossRefGoogle Scholar
  98. Thios, S. J., & D’Agostino, P. R. (1976). Effects of repetition as a function of study-phase retrieval. Journal of Verbal Learning and Verbal Behavior, 15(5), 529–536.CrossRefGoogle Scholar
  99. Toppino, T. C., & Cohen, M. S. (2009). The testing effect and the retention interval: Questions and answers. Experimental Psychology, 56(4), 252–257. doi:10.1027/1618-3169.56.4.252 PubMedCrossRefGoogle Scholar
  100. Vaughn, K. E., Hausman, H., & Kornell, N. (2016). Retrieval attempts enhance learning regardless of time spent trying to retrieve. Memory, 25(3), 298–316. doi:10.1080/09658211.2016.1170152 PubMedCrossRefGoogle Scholar
  101. Vaughn, K. E., & Rawson, K. A. (2014). Effects of criterion level on associative memory: Evidence for associative asymmetry. Journal of Memory and Language, 75, 14–26. doi:10.1016/j.jml.2014.04.004 CrossRefGoogle Scholar
  102. Wartenweiler, D. (2011). Testing effect for visual-symbolic material: Enhancing the learning of Filipino children of low socio-economic status in the public school system. International Journal of Research and Review, 6(1), 74–93.Google Scholar
  103. Wickelgren, W. A. (1974). Single-trace fragility theory of memory dynamics. Memory & Cognition, 2(4), 775–780.CrossRefGoogle Scholar
  104. Wiklund‐Hörnqvist, C., Jonsson, B., & Nyberg, L. (2014). Strengthening concept learning by repeated testing. Scandinavian Journal of Psychology, 55(1), 10–16. doi:10.1111/sjop.12093 PubMedCrossRefGoogle Scholar
  105. Wixted, J. T. (2004). On common ground: Jost’s (1897) law of forgetting and Ribot’s (1881) law of retrograde amnesia. Psychological Review, 111(4), 864–879. doi:10.1037/0033-295X.111.4.864 PubMedCrossRefGoogle Scholar
  106. Wixted, J. T. (2007). Dual-process theory and signal-detection theory of recognition memory. Psychological Review, 114(1), 152–176. doi:10.1037/0033-295X.114.1.152 PubMedCrossRefGoogle Scholar
  107. Wixted, J. T., & Ebbesen, E. B. (1991). On the form of forgetting. Psychological Science, 2(6), 409–415.CrossRefGoogle Scholar
  108. Wixted, J. T., & Ebbesen, E. B. (1997). Genuine power curves in forgetting: A quantitative analysis of individual subject forgetting functions. Memory & Cognition, 25(5), 731–739.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.University of California, San DiegoLa JollaUSA
  2. 2.Department of PsychologyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations