Psychonomic Bulletin & Review

, Volume 24, Issue 5, pp 1398–1412 | Cite as

Watching diagnoses develop: Eye movements reveal symptom processing during diagnostic reasoning

Article

Abstract

Finding a probable explanation for observed symptoms is a highly complex task that draws on information retrieval from memory. Recent research suggests that observed symptoms are interpreted in a way that maximizes coherence for a single likely explanation. This becomes particularly clear if symptom sequences support more than one explanation. However, there are no existing process data available that allow coherence maximization to be traced in ambiguous diagnostic situations, where critical information has to be retrieved from memory. In this experiment, we applied memory indexing, an eye-tracking method that affords rich time-course information concerning memory-based cognitive processing during higher order thinking, to reveal symptom processing and the preferred interpretation of symptom sequences. Participants first learned information about causes and symptoms presented in spatial frames. Gaze allocation to emptied spatial frames during symptom processing and during the diagnostic response reflected the subjective status of hypotheses held in memory and the preferred interpretation of ambiguous symptoms. Memory indexing traced how the diagnostic decision developed and revealed instances of hypothesis change and biases in symptom processing. Memory indexing thus provided direct online evidence for coherence maximization in processing ambiguous information.

Keywords

Eye movements Process tracing Memory indexing Diagnostic reasoning Coherence maximization 

Notes

Acknowledgments

This research was supported by the Swiss National Science Foundation (SNF) Grant PP00P1_157432 to the first author and German Research Foundation (DFG) Grants KR 1057/17-1 and JA 1761/7-1 to the second and third authors. The authors would like to thank Ricarda Fröde and Claudia Dietzel for their help in conducting the experiment, and Bettina von Helversen, Peter Shepherdson, Yvonne Oberholzer, and Tibor Petzoldt for helpful comments on an earlier version of the manuscript.

Supplementary material

13423_2017_1294_MOESM1_ESM.docx (975 kb)
ESM 1(DOCX 975 kb)

References

  1. Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38, 419–439. doi:10.1006/jmla.1997.2558 CrossRefGoogle Scholar
  2. Altmann, G. T. M. (2004). Language-mediated eye movements in the absence of a visual world: The ‘blank screen paradigm’. Cognition, 93, 79–87. doi:10.1016/j.cognition.2004.02.005 CrossRefGoogle Scholar
  3. Altmann, G. T. M., & Kamide, Y. (2007). The real-time mediation of visual attention by language and world knowledge: Linking anticipatory (and other) eye movements to linguistic processing. Journal of Memory and Language, 57, 502–518. doi:10.1016/j.jml.2006.12.004 CrossRefGoogle Scholar
  4. Altmann, G. T. M., & Kamide, Y. (2009). Discourse-mediation of the mapping between language and the visual world: Eye movements and mental representation. Cognition, 111, 55–71. doi:10.1016/j.cognition.2008.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amaya, A. (2015). The tapestry of reason: An inquiry into the nature of coherence and its role in legal argument. Oxford: Hart.Google Scholar
  6. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. doi:10.18637/jss.v067.i01 CrossRefGoogle Scholar
  7. Baumann, M. R. K., Krems, J. F., & Ritter, F. E. (2010). Learning from examples does not prevent order effects in belief revision. Thinking and Reasoning, 16, 98–130. doi:10.1080/13546783.2010.484211 CrossRefGoogle Scholar
  8. Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100, 432–459. doi:10.1037/0033-295X.100.3.432 CrossRefPubMedGoogle Scholar
  9. R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from https://www.R-project.org/.
  10. Croskerry, P. (2003). The importance of cognitive errors in diagnosis and strategies to minimize them. Academic Medicine, 78, 775–780. doi:10.1097/00001888-200308000-00003 CrossRefPubMedGoogle Scholar
  11. DeKay, M. L., Stone, E. R., & Sorenson, C. M. (2011). Sizing up information distortion: Quantifying its effect on the subjective values of choice options. Psychonomic Bulletin & Review, 19, 349–356. doi:10.3758/s13423-011-0184-8.
  12. Ferreira, F., Apel, J., & Henderson, J. M. (2008). Taking a new look at looking at nothing. Trends in Cognitive Sciences, 12, 405–410. doi:10.1016/j.tics.2008.07.007 CrossRefPubMedGoogle Scholar
  13. Fiedler, S., & Glöckner, A. (2012). The dynamics of decision making in risky choice: An eye-tracking analysis. Frontiers in Psychology, 3, 1–18. doi:10.3389/fpsyg.2012.00335 CrossRefGoogle Scholar
  14. Glaholt, M. G., & Reingold, E. M. (2011). Eye movement monitoring as a process tracing methodology in decision making research. Journal of Neuroscience, Psychology, and Economics, 4, 125–146. doi:10.1037/a0020692 CrossRefGoogle Scholar
  15. Glöckner, A., & Betsch, T. (2008). Modeling option and strategy choices with connectionist networks: Towards an integrative model of automatic and deliberate decision making. Judgment and Decision Making, 3, 215–228.Google Scholar
  16. Glöckner, A., Betsch, T., & Schindler, N. (2010). Coherence shifts in probabilistic inference tasks. Journal of Behavioral Decision Making, 23(5), 439–462.CrossRefGoogle Scholar
  17. Hagmayer, Y., & Kostopoulou, O. (2013). A parallel constraint satisfaction model of information distortion in diagnostic reasoning. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual conference of the cognitive science society (pp. 531–536). Austin: Cognitive Science Society.Google Scholar
  18. Hayes, B. K., Hawkins, G. E., Newll, B. R., Pasqualino, M., & Rehder, B. (2014). The role of causal models in multiple judgments under uncertainty. Cognition, 133, 611–620. doi:10.1016/j.cognition.2014.08.011 CrossRefPubMedGoogle Scholar
  19. Hogarth, R. M., & Einhorn, H. J. (1992). Order effects in belief updating: The belief-adjustment model. Cognitive Psychology, 24, 1–55. doi:10.1016/0010-0285(92)90002-J CrossRefGoogle Scholar
  20. Holyoak, K. J., & Simon, D. (1999). Bidirectional reasoning in decision making by constraint satisfaction. Journal of Experimental Psychology: General, 128, 3–31. doi:10.1037/0096-3445.128.1.3 CrossRefGoogle Scholar
  21. Hoover, M. A., & Richardson, D. C. (2008). When facts go down the rabbit hole: Contrasting features and objecthood as indexes to memory. Cognition, 108, 533–542. doi:10.1016/j.cognition.2008.02.011 CrossRefPubMedGoogle Scholar
  22. Horstmann, N., Ahlgrimm, A., & Glöckner, A. (2009). How distinct are intuition and deliberation? An eye-tracking analysis of instruction-induced decision modes. Judgment and Decision Making, 4, 335-354. http://papers.ssrn.com/abstract=1393729.
  23. Huettig, F., Olivers, C. N. L., & Hartsuiker, R. J. (2011). Looking, language, and memory: Bridging research from the visual world and visual search paradigms. Acta Psychologica, 137, 138–150. doi:10.1016/j.actpsy.2010.07.013 CrossRefPubMedGoogle Scholar
  24. Jahn, G., & Braatz, J. (2014). Memory indexing of sequential symptom processing in diagnostic reasoning. Cognitive Psychology, 68, 59–97. doi:10.1016/j.cogpsych.2013.11.002 CrossRefPubMedGoogle Scholar
  25. JASP Team. (2016). JASP (Version 0.8.0.0)[Computer software]. Available from https://jasp-stats.org/
  26. Johansson, R., Holsanova, J., Dewhurst, R., & Holmqvist, K. (2012). Eye movements during scene recollection have a functional role, but they are not reinstatements of those produced during encoding. Journal of Experimental Psychology: Human Perception and Performance, 38, 1289–1314. doi:10.1037/a0026585 PubMedGoogle Scholar
  27. Johansson, R., Holsanova, J., & Holmqvist, K. (2006). Pictures and spoken descriptions elicit similar eye movements during mental imagery, both in light and in complete darkness. Cognitive Science, 30, 1053–1079. doi:10.1207/s15516709cog0000 CrossRefPubMedGoogle Scholar
  28. Johansson, R., & Johansson, M. (2014). Look here, eye movements play a functional role in memory retrieval. Psychological Science, 25, 236–242. doi:10.1177/0956797613498260 CrossRefPubMedGoogle Scholar
  29. Johnson, T. R., & Krems, J. F. (2001). Use of current explanations in multicausal abductive reasoning. Cognitive Science, 25, 903–939. doi:10.1207/s15516709cog2506_2 CrossRefGoogle Scholar
  30. Klichowicz, A., Scholz, A., Strehlau, S., & Krems, J. F. (2016). Differentiating between encoding and processing during sequential diagnostic reasoning: An eye-tracking study. In D. Papafragou, D. Grodner, D. Mirman, & J. C. Trueswell (Eds.), Proceedings of the 38th annual conference of the cognitive science society (pp. 129–134). Austin: Cognitive Science Society.Google Scholar
  31. Kostopoulou, O., Russo, J. E., Keenan, G., Delaney, B. C., & Douiri, A. (2012). Information distortion in physicians’ diagnostic judgments. Medical Decision Making, 32, 831–839. doi:10.1177/0272989X12447241 CrossRefPubMedGoogle Scholar
  32. Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13, 1292–1298. doi:10.1038/nn.2635 CrossRefPubMedGoogle Scholar
  33. Lange, N. D., Thomas, R. P., & Davelaar, E. J. (2012). Temporal dynamics of hypothesis generation: The influences of data serial order, data consistency, and elicitation timing. Frontiers in Psychology, 3, 1–16. doi:10.3389/fpsyg.2012.00215 CrossRefGoogle Scholar
  34. Martarelli, C. S., Mast, F. W., & Hartmann, M. (2017). Time in the eye of the beholder: Gaze position reveals spatial-temporal associations during encoding and memory retrieval of future and past. Memory & Cognition, 45, 40-48. doi:10.3758/s13421-016-0639-2.
  35. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive model of context effects in letter perception. Part 1. An account of basic findings. Psychological Review, 88, 375-407.Google Scholar
  36. McKenzie, C. R. M. (1998). Taking into account the strength of an alternative hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 771–792. doi:10.1037/0278-7393.24.3.771 Google Scholar
  37. Meder, B., Mayrhofer, R., & Waldmann, M. R. (2014). Structure induction in diagnostic causal reasoning. Psychological Review, 121, 277–301. doi:10.1037/a0035944 CrossRefPubMedGoogle Scholar
  38. Mehlhorn, K., & Jahn, G. (2009). Modeling sequential information integration with parallel constraint satisfaction. In N. A. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st annual conference of the cognitive science society (pp. 2469–2474). Austin: Cognitive Science Society.Google Scholar
  39. Mehlhorn, K., Taatgen, N. A., Lebiere, C., & Krems, J. F. (2011). Memory activation and the availability of explanations in sequential diagnostic reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1391–1411. doi:10.1037/a0023920 PubMedGoogle Scholar
  40. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau. In Tutorials in Quantitative Methods for Psychology, 4, 61–64.CrossRefGoogle Scholar
  41. Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2, 175–220. doi:10.1037//1089-2680.2.2.175 CrossRefGoogle Scholar
  42. Orquin, J., & Mueller Loose, S. (2013). Attention and choice: A review on eye movements in decision making. Acta Psychologica, 144, 190–206. doi:10.1016/j.actpsy.2013.06.003 CrossRefPubMedGoogle Scholar
  43. Patel, V. L., Arocha, J. F., & Zhang, J. (2005). Thinking and reasoning in medicine. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 727–750). New York: Cambridge University Press.Google Scholar
  44. Platzer, C., Bröder, A., & Heck, D. W. (2014). Deciding with the eye: How the visually manipulated accessibility of information in memory influences decision behavior. Memory & Cognition, 42, 595–608. doi:10.3758/s13421-013-0380-z CrossRefGoogle Scholar
  45. Read, S. J., Vanman, E. J., & Miller, L. C. (1997). Connectionism, parallel constraint satisfaction processes, and gestalt principles: (Re)introducing cognitive dynamics to social psychology. Personality and Social Psychology Review, 1, 26–53. doi:10.1207/s15327957pspr0101_3.
  46. Rebitschek, F., Bocklisch, F., Scholz, A., Krems, J. F., & Jahn, G. (2015). Biased processing of ambiguous symptoms favors the initially leading hypothesis in sequential diagnostic reasoning. Experimental Psychology, 62, 287–305. doi:10.1027/1618-3169/a000298 CrossRefPubMedGoogle Scholar
  47. Rebitschek, F., Krems, J. F., & Jahn, G. (2015). Memory activation of multiple hypotheses in sequential diagnostic reasoning. Journal of Cognitive Psychology, 6, 780–796. doi:10.1080/20445911.2015.1026825.
  48. Rebitschek, F., Scholz, A., Bocklisch, F., Krems, J. F., & Jahn, G. (2012). Order effects in diagnostic reasoning with four candidate hypotheses. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th annual conference of the cognitive science society (pp. 905–910). Austin: Cognitive Science Society.Google Scholar
  49. Renkewitz, F., & Jahn, G. (2010). Tracking memory search for cue information. In A. Glöckner & C. Witteman (Eds.), Foundations for tracing intuition: Challenges and methods (pp. 199–218). New York: Psychology Press.Google Scholar
  50. Renkewitz, F., & Jahn, G. (2012). Memory indexing: A novel method for tracing memory processes in complex cognitive tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1622–1639. doi:10.1037/a0028073 PubMedGoogle Scholar
  51. Richardson, D. C., Altmann, G. T. M., Spivey, M. J., & Hoover, M. A. (2009). Much ado about eye movements to nothing: A response to Ferreira et al.: Taking a new look at looking at nothing. Trends in Cognitive Sciences, 13, 235–236. doi:10.1016/j.tics.2009.02.006 CrossRefPubMedGoogle Scholar
  52. Richardson, D. C., & Kirkham, N. Z. (2004). Multimodal events and moving locations: Eye movements of adults and 6-month-olds reveal dynamic spatial indexing. Journal of Experimental Psychology: General, 133, 46–62. doi:10.1037/0096-3445.133.1.46 CrossRefGoogle Scholar
  53. Richardson, D. C., & Spivey, M. J. (2000). Representation, space and hollywood squares: Looking at things that aren’t there anymore. Cognition, 76, 269–295. doi:10.1016/S0010-0277(00)00084-6 CrossRefPubMedGoogle Scholar
  54. Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart, & The PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition, (Vol. 2, pp. 7–57). Cambridge, MA: MIT Press.Google Scholar
  55. Russo, J. E., Medvec, V. H., & Meloy, M. G. (1996). The distortion of information during decisions. Organizational Behavior and Human Decision Processes, 66, 102–110. doi:10.1006/obhd.1996.0041 CrossRefGoogle Scholar
  56. Scholz, A., Mehlhorn, K., & Krems, J. F. (2016). Listen up, eye movements play a role in verbal memory retrieval. Psychological Research, 80, 149–158. doi:10.1007/s00426-014-0639-4.
  57. Scholz, A., von Helversen, B., & Rieskamp, J. (2015). Eye movements reveal memory processes during similarity- and rule-based decision making. Cognition, 136, 228–246. doi:10.1016/j.cognition.2014.11.019 CrossRefPubMedGoogle Scholar
  58. Schulte-Mecklenbeck, M., Kühberger, A., & Ranyard, R. (2011). The role of process data in the development and testing of process models of judgment and decision making. Judgment and Decision Making, 6, 733–739.Google Scholar
  59. Shimojo, S., Simion, C., Shimojo, E., & Scheier, C. (2003). Gaze bias both reflects and influences preference. Nature Neuroscience, 6, 1317–1322. doi:10.1038/nn1150 CrossRefPubMedGoogle Scholar
  60. Simon, D., Snow, C. J., & Read, S. J. (2004). The redux of cognitive consistency theories: Evidence judgments by constraint satisfaction. Journal of Personality and Social Psychology, 86, 814–837. doi:10.1037/0022-3514.86.6.814.
  61. Simon, D., Stenstrom, D. M., & Read, S. J. (2015). The coherence effect: Blending cold and hot cognitions. Journal of Personality and Social Psychology, 109, 369–394. doi:10.1037/pspa0000029.
  62. Spivey, M. J., & Dale, R. (2011). Eye movements both reveal and influence problem solving. In S. P. Liversedge, I. Gilchrist, & S. Everling (Eds.), The Oxford handbook of eye movements (pp. 551–562). New York: Oxford University Press.Google Scholar
  63. Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory: Eye movements to absent objects. Psychological Research, 65, 235–241. doi:10.1007/s004260100059 CrossRefPubMedGoogle Scholar
  64. Stewart, N., Hermens, F., & Matthews, W. J. (2015). Eye movements in risky choice. Journal of Behavioral Decision Making, 29, 116–136. doi:10.1002/bdm.1854.
  65. Strickland, B., & Keil, F. (2011). Event completion: Event based inferences distort memory in a matter of seconds. Cognition, 121, 409–415. doi:10.1016/j.cognition.2011.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632–1634. doi:10.1126/science.7777863 CrossRefPubMedGoogle Scholar
  67. Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences, 12, 435–467. doi:10.1017/S0140525X00057046.
  68. Thomas, R. P., Dougherty, M. R., Sprenger, A. M., & Harbison, J. I. (2008). Diagnostic hypothesis generation and human judgment. Psychological Review, 115, 155–185. doi:10.1037/0033-295X.115.1.155 CrossRefPubMedGoogle Scholar
  69. Wang, H., Johnson, T. R., & Zhang, J. (2006). The order effect in human abductive reasoning: An empirical and compuational study. Journal of Experimental & Theoretical Artificial Intelligence, 18, 215–247. doi:10.1080/09528130600558141 CrossRefGoogle Scholar
  70. Weber, E. U., Böckenholt, U., Hilton, D. J., & Wallace, B. (1993). Determinants of diagnostic hypothesis generation: Effects of information, base rates, and experience. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1151–1164. doi:10.1037/0278-7393.19.5.1151 PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of ZurichZurichSwitzerland
  2. 2.Department of PsychologyTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations