Psychonomic Bulletin & Review

, Volume 24, Issue 5, pp 1436–1450 | Cite as

Contextual utility affects the perceived quality of explanations

  • Nadya Vasilyeva
  • Daniel Wilkenfeld
  • Tania Lombrozo
Brief Report

Abstract

Are explanations of different kinds (formal, mechanistic, teleological) judged differently depending on their contextual utility, defined as the extent to which they support the kinds of inferences required for a given task? We report three studies demonstrating that the perceived “goodness” of an explanation depends on the evaluator’s current task: Explanations receive a relative boost when they support task-relevant inferences, even when all three explanation types are warranted. For example, mechanistic explanations receive higher ratings when participants anticipate making further inferences on the basis of proximate causes than when they anticipate making further inferences on the basis of category membership or functions. These findings shed light on the functions of explanation and support pragmatic and pluralist approaches to explanation.

Keywords

Explanation Inference Inductive utility Context Pragmatic factors 

Notes

Acknowledgements

This work was supported by the Varieties of Understanding Project, funded by the John Templeton Foundation. We are grateful to Daria Serrano Cargol, Siqi Liu and Marc Collado-Ramírez for assistance in preparation of materials and data collection.

Supplementary material

13423_2017_1275_MOESM1_ESM.docx (6 mb)
ESM 1 (DOCX 5.97 mb)

References

  1. Aarts, H., & Elliot, A. (Eds.). (2012). Goal-directed behavior. New York, NY: Taylor & Francis.Google Scholar
  2. Ahn, W. (1998). Why are different features central for natural kinds and artifacts? Cognition, 69, 135–178.CrossRefPubMedGoogle Scholar
  3. Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11, 211–227.CrossRefGoogle Scholar
  4. Chin-Parker, S., & Bradner, A. (2010). Background shifts affect explanatory style: How a pragmatic theory of explanation accounts for background effects in the generation of explanations. Cognitive Processing, 11(3), 227–249.CrossRefPubMedGoogle Scholar
  5. Craik, K. J. W. (1943). The nature of explanation. Cambridge, UK: Cambridge University Press.Google Scholar
  6. Dennett, D. C. (1987). The intentional stance. Cambridge, MA: MIT Press.Google Scholar
  7. Dijksterhuis, A., & Aarts, H. (2010). Goals, attention, and (un) consciousness. Annual review of psychology, 61, 467-490.Google Scholar
  8. Gorovitz, S. (1965). Causal judgments and causal explanations. The Journal of Philosophy, 62(23), 695–711.CrossRefGoogle Scholar
  9. Hale, C. R., & Barsalou, L. W. (1995). Explanation content and construction during system learning and troubleshooting. Journal of the Learning Sciences, 4(4), 385–436.CrossRefGoogle Scholar
  10. Heider, F. (1958). The psychology of interpersonal relations. New York, NY: John Wiley & Sons.CrossRefGoogle Scholar
  11. Hempel, C., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135–175.CrossRefGoogle Scholar
  12. Heussen, D. (2010). When functions and causes compete. Thinking & Reasoning, 16(3), 233–250.CrossRefGoogle Scholar
  13. Hilton, D. J. (1990). Conversational processes and causal explanation. Psychological Bulletin, 107(1), 65–81.CrossRefGoogle Scholar
  14. Hilton, D. J., & Erb, H.-P. (1996). Mental models and causal explanation: Judgements of probable cause and explanatory relevance. Thinking & Reasoning, 2(4), 273–308.Google Scholar
  15. Kelemen, D., Rottman, J., & Seston, R. (2013). Professional physical scientists display tenacious teleological tendencies. Purpose-based reasoning as a cognitive default. Journal of Experimental Psychology: General, 142(4), 1074–1083.CrossRefGoogle Scholar
  16. Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. Salmon (Eds.), Scientific explanation. Minneapolis: University of Minnesota Press.Google Scholar
  17. Kitcher, P., & Salmon, W. (1987). Van Fraassen on explanation. Journal of Philosophy, 84, 315–330.CrossRefGoogle Scholar
  18. Leake, D. (1995). Abduction, experience, and goals: A model of everyday abductive explanation. Journal of Experimental & Theoretical Artificial Intelligence, 7(4), 407–428.CrossRefGoogle Scholar
  19. Lipton, P. (1990). Contrastive explanation. Royal Institute of Philosophy Supplement, 27, 247-266.Google Scholar
  20. Lipton, P. (1993). Is the Best Good Enough? Proceedings of the Aristotelian Society, 93, new series, 89-104.Google Scholar
  21. Lipton, P. (2004). Inference to the best explanation. London, UK: Psychology Press.Google Scholar
  22. Lombrozo, T. (2007). Simplicity and probability in causal explanation. Cognitive Psychology, 55, 232–257. doi: 10.1016/j.cogpsych.2006.09.006 CrossRefPubMedGoogle Scholar
  23. Lombrozo, T. (2009). Explanation and categorization: How “why?” informs “what?”. Cognition, 110(2), 248-253.Google Scholar
  24. Lombrozo, T., & Carey, S. (2006). Functional explanation and the function of explanation. Cognition, 99(2), 167–204.CrossRefPubMedGoogle Scholar
  25. Lombrozo, T., & Gwynne, N. Z. (2014). Explanation and inference: mechanistic and functional explanations guide property generalization. Frontiers in Human Neuroscience, 8, 700.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lombrozo, T. & Rehder, B. (2012). Functions in biological kind classification. Cognitive Psychology, 65, 457-485. doi: 10.1016/j.cogpsych.2012.06.002
  27. Markman, A. B., & Ross, B. H. (2003). Category use and category learning. Psychological Bulletin, 129(4), 592.CrossRefPubMedGoogle Scholar
  28. McGill, A. L. (1989). Context effects in judgments of causation. Journal of Personality and Social Psychology, 57(2), 189.CrossRefGoogle Scholar
  29. Patterson, R., Operskalski, J. T., & Barbey, A. K. (2015). Motivated explanation. Frontiers in human neuroscience, 9. doi: 10.3389/fnhum.2015.00559
  30. Prasada, S., & Dillingham, E. M. (2006). Principled and statistical connections in common sense conception. Cognition, 99(1), 73–112. doi: 10.1016/j.cognition.2005.01.003
  31. Prasada, S., & Dillingham, E. M. (2009a). Representation of principled connections: A window onto the formal aspect of common sense conception. Cognitive Science, 33(3), 401–448.CrossRefPubMedGoogle Scholar
  32. Prasada, S., & Dillingham, E. M. (2009b). Representation of principled connections: A window onto the formal aspect of common sense conception. Cognitive Science, 33(3), 401–48. doi: 10.1111/j.1551-6709.2009.01018.x
  33. Pennington, N., & Hastie, R. (1993). Reasoning in explanation-based decision making. Cognition, 49(1), 123–163.CrossRefPubMedGoogle Scholar
  34. Railton, P. (1978). A deductive-nomological model of probabilistic explanation. Philosophy of Science, 45(2), 206–226.CrossRefGoogle Scholar
  35. Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton, NJ: Princeton University Press.Google Scholar
  36. van Fraassen, B. (1980). The scientific image. Oxford, UK: Clarendon Press.CrossRefGoogle Scholar
  37. Vasilyeva, N., & Coley, J. C. (2013). Evaluating two mechanisms of flexible induction: Selective memory retrieval and evidence explanation. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society. Cognitive Science Society: Austin, TX.Google Scholar
  38. Vlach, H. A., & Noll, N. (2016). Talking to children about science is harder than we think: Characteristics and metacognitive judgments of explanations provided to children and adults. Metacognition and Learning, 11(3), 317–338. doi: 10.1007/s11409-016-9153-y CrossRefGoogle Scholar
  39. Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford, UK: Oxford University Press.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Nadya Vasilyeva
    • 1
  • Daniel Wilkenfeld
    • 2
  • Tania Lombrozo
    • 1
  1. 1.Department of PsychologyUniversity of California BerkeleyBerkeleyUSA
  2. 2.Department of History and Philosophy of ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations