Psychonomic Bulletin & Review

, Volume 24, Issue 4, pp 1186–1193 | Cite as

Bedding down new words: Sleep promotes the emergence of lexical competition in visual word recognition

  • Hua-Chen Wang
  • Greg Savage
  • M. Gareth Gaskell
  • Tamara Paulin
  • Serje Robidoux
  • Anne Castles
Brief Report

Abstract

Lexical competition processes are widely viewed as the hallmark of visual word recognition, but little is known about the factors that promote their emergence. This study examined for the first time whether sleep may play a role in inducing these effects. A group of 27 participants learned novel written words, such as banara, at 8 am and were tested on their learning at 8 pm the same day (AM group), while 29 participants learned the words at 8 pm and were tested at 8 am the following day (PM group). Both groups were retested after 24 hours. Using a semantic categorization task, we showed that lexical competition effects, as indexed by slowed responses to existing neighbor words such as banana, emerged 12 h later in the PM group who had slept after learning but not in the AM group. After 24 h the competition effects were evident in both groups. These findings have important implications for theories of orthographic learning and broader neurobiological models of memory consolidation.

Keywords

Visual word recognition Lexical competition Word learning Lexical consolidation Sleep 

References

  1. Andrews, S., & Lo, S. (2012). Not all skilled readers have cracked the code: Individual differences in masked form priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(1), 152–163. doi:10.1037/a0024953 PubMedGoogle Scholar
  2. Axelsson, E. L., Williams, S. E., & Horst, J. S. (2016). The effect of sleep on children’s word retention and generalization. Frontiers in Psychology, 7. doi: 10.3389/fpsyg.2016.01192
  3. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of memory and language, 68(3), 255–278.Google Scholar
  4. Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. (2014). Competition from unseen or unheard novel words: Lexical consolidation across modalities. Journal of Memory and Language, 73, 116–130. doi:10.1016/j.jml.2014.03.002 CrossRefGoogle Scholar
  5. Benson, K., & Feinberg, I. (1975). Sleep and memory: Retention 8 and 24 hours after initial learning. Psychophysiology, 12(2), 192–195. doi:10.1111/j.1469-8986.1975.tb01275.x CrossRefPubMedGoogle Scholar
  6. Bowers, J. S., Davis, C. J., & Hanley, D. A. (2005). Interfering neighbours: The impact of novel word learning on the identification of visually similar words. Cognition, 97(3), B45–B54. doi:10.1016/j.cognition.2005.02.002 CrossRefGoogle Scholar
  7. Coutanche, M. N., & Thompson-Schill, S. L. (2014). Fast mapping rapidly integrates information into existing memory networks. Journal of Experimental Psychology: General, 143(6), 2296–2303. doi:10.1037/xge0000020 CrossRefGoogle Scholar
  8. Davis, H. M., & Gaskell, M. G. (2009). A complementary systems account of word learning: Neural and behavioural evidence. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1536), 3773–3800. doi:10.1098/rstb.2009.0111 CrossRefPubMedCentralGoogle Scholar
  9. Davis, C. J., & Lupker, S. J. (2006). Masked inhibitory priming in English: Evidence for lexical inhibition. Journal of Experimental Psychology: Human Perception and Performance, 32(3), 668–687. doi:10.1037/0096-1523.32.3.668 PubMedGoogle Scholar
  10. Dumay, N. (2016). Sleep not just protects memories against forgetting, it also makes them more accessible. Cortex, 74, 289–296. doi:10.1016/j.cortex.2015.06.007 CrossRefGoogle Scholar
  11. Dumay, N., & Gaskell, M. G. (2007). Sleep-associated changes in the mental representation of spoken words. Psychological Science, 18(1), 35–39. doi:10.1111/j.1467-9280.2007.01845.x CrossRefPubMedGoogle Scholar
  12. Dumay, N., & Gaskell, M. G. (2012). Overnight lexical consolidation revealed by speech segmentation. Cognition, 123(1), 119–132. doi:10.1016/j.cognition.2011.12.009 CrossRefPubMedGoogle Scholar
  13. Forster, K. I., & Forster, J. C. (2003). DMDX: A windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35(1), 116–124.CrossRefGoogle Scholar
  14. Gaskell, M. G., & Dumay, N. (2003). Lexical competition and the acquisition of novel words. Cognition, 89(2), 105–132. doi:10.1016/S0010-0277(03)00070-2 CrossRefGoogle Scholar
  15. Gaskell, M. G., Warker, J., Lindsay, S., Frost, R., Guest, J., Snowdon, R., & Stackhouse, A. (2014). Sleep underpins the plasticity of language production. Psychological Science, 25(7), 1457–1465. doi:10.1177/0956797614535937 CrossRefGoogle Scholar
  16. Grainger, & Jacobs. (1996). Ovid: Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518–565.CrossRefPubMedGoogle Scholar
  17. Grainger, J., O’Regan, J. K., Jacobs, A. M., & Segui, J. (1989). On the role of competing word units in visual word recognition: The neighborhood frequency effect. Perception & Psychophysics, 45(3), 189–195.CrossRefGoogle Scholar
  18. Henderson, M. L., Weighall, R. A., Brown, H., & Gaskell, M. G. (2012). Consolidation of vocabulary is associated with sleep in children. Developmental Science, 15(5), 674–687. doi:10.1111/j.1467-7687.2012.01172.x CrossRefPubMedGoogle Scholar
  19. Idzikowski, C. (1984). Sleep and memory. British Journal of Psychology, 75(4), 439–449. doi:10.1111/j.2044-8295.1984.tb01914.x CrossRefPubMedGoogle Scholar
  20. Kurdziel, L. B. F., & Spencer, R. M. C. (2015). Consolidation of novel word learning in native English-speaking adults. Memory, 0(0), 1–11. doi: 10.1080/09658211.2015.1019889
  21. Lahl, O., Wispel, C., Willigens, B., & Pietrowsky, R. (2008). An ultra short episode of sleep is sufficient to promote declarative memory performance. Journal of Sleep Research, 17(1), 3–10. doi:10.1111/j.1365-2869.2008.00622.x CrossRefGoogle Scholar
  22. McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419–457. doi:10.1037/0033-295X.102.3.419 CrossRefPubMedGoogle Scholar
  23. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88(5), 375–407. doi:10.1037/0033-295X.88.5.375 CrossRefGoogle Scholar
  24. McMurray, B., Kapnoula, E.C., & Gaskell, M.G. (2016). Learning and integration of new word-forms: Consolidation, pruning and the emergence of automaticity. In G. Gaskell, & J. Mirkovic (Eds.), Speech Perception and Spoken Word Recognition. (pp. 116–142). Routledge.Google Scholar
  25. Mirković, J., & Gaskell, M. G. (2016). Does sleep improve your grammar? Preferential consolidation of arbitrary components of new linguistic knowledge. PLoS ONE, 11(4), e0152489. doi:10.1371/journal.pone.0152489 CrossRefPubMedPubMedCentralGoogle Scholar
  26. O’Reilly, R. C., & Norman, K. A. (2002). Hippocampal and neocortical contributions to memory: Advances in the complementary learning systems framework. Trends in Cognitive Sciences, 6(12), 505–510. doi:10.1016/S1364-6613(02)02005-3 CrossRefPubMedGoogle Scholar
  27. Qiao, X., & Forster, K. I. (2013). Novel word lexicalization and the prime lexicality effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1064–1074. doi:10.1037/a0030528 PubMedGoogle Scholar
  28. Qiao, X., Forster, K., & Witzel, N. (2009). Is banara really a word? Cognition, 113(2), 254–257. doi:10.1016/j.cognition.2009.08.006 CrossRefPubMedGoogle Scholar
  29. Schreiner, T., & Rasch, B. (2016). To gain or not to gain – The complex role of sleep for memory: Comment on Dumay (2016). Cortex. doi:10.1016/j.cortex.2016.06.011 Google Scholar
  30. Sharon, T., Moscovitch, M., & Gilboa, A. (2011). Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proceedings of the National Academy of Sciences, 108(3), 1146–1151. doi:10.1073/pnas.1005238108 CrossRefGoogle Scholar
  31. Szmalec, A., Page, M. P. A., & Duyck, W. (2012). The development of long-term lexical representations through Hebb repetition learning. Journal of Memory and Language, 67(3), 342–354. doi:10.1016/j.jml.2012.07.001 CrossRefGoogle Scholar
  32. Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. The Journal of Neuroscience, 30(43), 14356–14360. doi:10.1523/JNEUROSCI.3028-10.2010 CrossRefPubMedCentralGoogle Scholar
  33. Walker, M. P., & Stickgold, R. (2010). Overnight alchemy: Sleep-dependent memory evolution. Nature Reviews Neuroscience, 11(3), 218. doi:10.1038/nrn2762-c1 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Warren, D. E., & Duff, M. C. (2014). Not so fast: Hippocampal amnesia slows word learning despite successful fast mapping. Hippocampus, 24(8), 920–933. doi:10.1002/hipo.22279 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2016

Authors and Affiliations

  • Hua-Chen Wang
    • 1
  • Greg Savage
    • 1
  • M. Gareth Gaskell
    • 2
  • Tamara Paulin
    • 1
  • Serje Robidoux
    • 1
  • Anne Castles
    • 1
  1. 1.Department of Cognitive Science, ARC Centre of Excellence in Cognition and its DisordersMacquarie UniversitySydneyAustralia
  2. 2.Department of PsychologyUniversity of YorkYorkUK

Personalised recommendations