Psychonomic Bulletin & Review

, Volume 22, Issue 3, pp 757–765 | Cite as

Individual differences in the allocation of attention to items in working memory: Evidence from pupillometry

Brief Report

Abstract

We utilized pupillary responses as an online measure of attentional allocation and fluctuations in attention in order to better examine both how attention is allocated to items in working memory (WM) and individual differences therein. We found that the pupillary response during a delay was modulated by the number of items to be held in memory, reaching asymptote close to capacity limits. Furthermore, we found that during the delay, how individuals allocated attention to items in WM depended on the number of items to be held, as well as on an individual’s capacity. Finally, we found that pretrial pupil diameter distinguished correct and error responses and that individuals with more variability in pretrial pupil diameter had lower behavioral capacity estimates. These results suggest that individual differences in WM are due both to differences in the amount of attention that can be allocated to maintain items in WM and to differences in fluctuations in attention control across trials.

Keywords

Individual differences Memory capacity Working memory 

References

  1. Alnæs, D. Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H., & Laeng, B. (2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14(4), 1:1–20. doi:10.1167/14.4.1
  2. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus–norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. doi:10.1146/annurev.neuro.28.061604.135709 CrossRefPubMedGoogle Scholar
  3. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292. doi:10.1037/0033-2909.91.2.276 CrossRefPubMedGoogle Scholar
  4. Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 142–162). New York, NY: Cambridge University Press.Google Scholar
  5. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114, disc. 114–185. doi:10.1017/S0140525X01003922
  6. Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42–100. doi:10.1016/j.cogpsych.2004.12.001 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Craik, F. I. M., & Levy, B. A. (1976). The concept of primary memory. In W. K. Estes (Ed.), Handbook of learning and cognitive processes (pp. 133–175). New York, NY: Erlbaum.Google Scholar
  8. Daniels, L. B., Nichols, D. F., Seifert, M. S., & Hock, H. S. (2012). Changes in pupil diameter entrained by cortically initiated changes in attention. Vision Neuroscience, 29, 131–142. doi:10.1017/S0952523812000077 CrossRefGoogle Scholar
  9. Donkin, C., Nosofsky, R. M., Gold, J. M., & Shiffrin, R. M. (2013). Discrete-slots models of visual working-memory response times. Psychological Review, 120, 873–902. doi:10.1037/a0034247 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 44, pp. 145–199). New York, NY: Elsevier.Google Scholar
  11. Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10, 252–269. doi:10.3758/CABN.10.2.252 CrossRefGoogle Scholar
  12. Goldinger, S. D., & Papesh, M. H. (2012). Pupil dilation reflects the creation and retrieval of memories. Current Directions in Psychological Science, 21, 90–95.CrossRefGoogle Scholar
  13. Heitz, R. P., Schrock, J. C., Payne, T. W., & Engle, R. W. (2008). Effects of incentive on working memory capacity: Behavioral and pupillometric data. Psychophysiology, 45, 119–129. doi:10.1111/j.1469-8986.2007.00605.x PubMedGoogle Scholar
  14. Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143, 1190–1192.CrossRefPubMedGoogle Scholar
  15. Just, M. A., & Carpenter, P. A. (1993). The intensity dimension of thought: Pupillometric indices of sentence processing. Canadian Journal of Experimental Psychology, 47, 310–339. doi:10.1037/h0078820 CrossRefPubMedGoogle Scholar
  16. Kahneman, D. (1973). Attention and effort. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  17. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585.CrossRefPubMedGoogle Scholar
  18. Kristjansson, S. D., Stern, J. A., Brown, T. B., & Rohrbaugh, J. W. (2009). Detecting phasic lapses of alterness using pupillometric measures. Applied Ergonomics, 40, 978–986. doi:10.1016/j.apergo.2009.04.007 CrossRefPubMedGoogle Scholar
  19. Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: A window to the preconscious? Perspectives on Psychological Science, 7, 18–27.CrossRefGoogle Scholar
  20. Morad, Y., Lemberg, H., Yofe, N., & Dagan, Y. (2000). Pupillography as an objective indicator of fatigue. Current Eye Research, 21, 535–542.CrossRefPubMedGoogle Scholar
  21. Murphy, P. R., Robertson, I. H., Balsters, J. H., & O’Connell, R. G. (2011). Pupillometry and P3 index the locus coeruleus–noradrenergic arousal function in humans. Psychophysiology, 48, 1532–1543. doi:10.1111/j.1469-8986.2011.01226.x CrossRefPubMedGoogle Scholar
  22. Peavler, W. S. (1974). Pupil size, information overload, and performance differences. Psychophysiology, 11, 559–566.CrossRefPubMedGoogle Scholar
  23. Raye, C. L., Johnson, M. K., Mitchell, K. J., Greene, E. J., & Johnson, M. R. (2007). Refreshing: A minimal executive function. Cortex, 43, 135–145.CrossRefPubMedGoogle Scholar
  24. Rouder J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An assessment of fixed-capacity models of visual working memory. Proceedings of the National Academy of Sciences, 105, 5975–5979. doi:10.1073/pnas.0711295105
  25. Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10, 211–223.CrossRefPubMedGoogle Scholar
  26. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754. doi:10.1038/nature02466 CrossRefPubMedGoogle Scholar
  27. Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114, 104–132. doi:10.1037/0033-295X.114.1.104 CrossRefPubMedGoogle Scholar
  28. Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 1–26. doi:10.1016/j.cogpsych.2014.01.003 CrossRefPubMedGoogle Scholar
  29. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751. doi:10.1038/nature02447 CrossRefPubMedGoogle Scholar
  30. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to visual working memory. Nature, 438, 500–503. doi:10.1038/nature04171 CrossRefPubMedGoogle Scholar
  31. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 459–482.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of OregonEugeneUSA

Personalised recommendations