Psychonomic Bulletin & Review

, Volume 22, Issue 6, pp 1519–1522 | Cite as

Varieties of perceptual truth and their possible evolutionary roots

Brief Report

Abstract

Hoffman, Singh, and Prakash (2014) observe that perception evolves to serve as an interface between the perceiver and the world and proceed to reason that percepts need not, or even cannot, resemble their objects. I accept their premise, but argue that there are interesting ways in which perception can be truthful, with regard not to “objects” but to relations, and that evolutionary pressure is expected to favor rather than rule out such veridicality.

Keywords

Causal induction Concepts and categories Perceptual categorization and identification Visual perception 

References

  1. Barlow, H.B. (1980). The absolute efficiency of perceptual decisions. Proceedings of the Royal Society of London B, 290, 71–82.CrossRefGoogle Scholar
  2. Clark, A. (1993). Sensory qualities. Oxford: Clarendon Press.Google Scholar
  3. Cleeremans, A. (2008). Consciousness: The radical plasticity thesis. In R. Banerjee, & B. K. Chakrabarti (Eds.) Progress in Brain Research, Volume 168, Chapter 3, (pp. 19–33).Google Scholar
  4. Cosmides, L., & Tooby, J. (1997). Evolutionary psychology: A primer. Available online at. http://www.psych.ucsb.edu/research/cep/primer.html.
  5. De Pierris, G., & Friedman, M. (2013). Kant and Hume on causality In Zalta, E.N. (Ed.) The Stanford Encyclopedia of Philosophy. (Winter 2013 ed.)Google Scholar
  6. Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35, 125–129.CrossRefGoogle Scholar
  7. Edelman, S. (1998). Representation is representation of similarity. Behavioral and Brain Sciences, 21, 449–498.PubMedGoogle Scholar
  8. Edelman, S. (1999). Representation and recognition in vision. Cambridge: MIT Press.Google Scholar
  9. Edelman, S. (2008). Computing the mind: How the mind really works. New York: Oxford University Press.Google Scholar
  10. Edelman, S. (2011). The metaphysics of embodiment. International Journal of Machine Consciousness, 3, 321–325. Part of a collective review of Embodiment and the Inner Life by M. Shanahan, Oxford University Press, 2010.CrossRefGoogle Scholar
  11. Edelman, S. (2014). Design for a brain? Submitted.Google Scholar
  12. Edelman, S., & Shahbazi, R. (2012). Renewing the respect for similarity. Frontiers in Computational Neuroscience, 6, 45.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Fekete, T., & Edelman, S. (2011). Towards a computational theory of experience. Consciousness and Cognition, 20, 807–827.CrossRefPubMedGoogle Scholar
  14. Ginsburg, S., & Jablonka, E. (2010). Experiencing: A Jamesian approach. Journal of Consciousness Studies, 17, 102–124.Google Scholar
  15. Harnad, S. (1987). Categorical Perception: The Groundwork of Cognition. New York: Cambridge University Press.Google Scholar
  16. Hoffman, D.D., Singh, M., Prakash, C. (2014). The interface theory of perception. Psychonomic Bulletin and Review. In press.Google Scholar
  17. Holyoak, K.J., & Cheng, P.W. (2011). Causal learning and inference as a rational process: The new synthesis. Annual Review of Psychology, 62, 135–163.CrossRefPubMedGoogle Scholar
  18. Hume, D. (1748). An enquiry concerning human understanding. Available online at http://eserver.org/18th/hume-enquiry.html.
  19. Knill, D.C., & Kersten, D. (1991). Ideal perceptual observers for computation, psychophysics and neural networks In Watt, R. (Ed.), Vision and visual dysfunction, Volume 14, Chapter 7, (pp. 83–97). London: Macmillan.Google Scholar
  20. Kolodny, O., & Edelman, S. (2014). The problem of concurrent multimodal serial order in behavior. Submitted.Google Scholar
  21. Kushnir, T., & Gopnik, A. (2005). Young children infer causal strength from probabilities and interventions. Psychological Science, 16, 678–683.CrossRefPubMedGoogle Scholar
  22. Lagnado, D.A., & Speekenbrink, M. (2010). The influence of delays in real-time causal learning. The Open Psychology Journal, 3, 184–195.Google Scholar
  23. Lagnado, D.A., Waldmann, M.R., Hagmayer, Y., Sloman, S.A. (2007). Beyond covariation: Cues to causal structure In Gopnik, A., & Schulz, L. (Eds.) Structure, (pp. 1–48): Oxford University Press.Google Scholar
  24. Lashley, K.S. (1951). The problem of serial order in behavior In Jeffress, L.A. (Ed.), Cerebral Mechanisms in Behavior, (pp. 112–146). New York: Wiley.Google Scholar
  25. Leising, K.J., Wong, J., Waldmann, M.R., Blaisdell, A.P. (2008). The special status of actions in causal reasoning in rats. Journal of Experimental Psychology: General, 137, 514–527.CrossRefGoogle Scholar
  26. Macmillan, N.A., Kaplan, H.L., Creelman, C.D. (1977). The psychophysics of categorical perception. Psychological Review, 84, 452–471.CrossRefPubMedGoogle Scholar
  27. Pearl, J. (2001). Causal inference in statistics: A gentle introduction. In Computing science and statistics: Proceedings of interface 01 (Vol. 33). Avaliable online at http://ftp.cs.ucla.edu/pub/stat_ser/R289.pdf.
  28. Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96–146.CrossRefGoogle Scholar
  29. Pearl, J. (2013). Structural counterfactuals: A brief introduction. Cognitive Science, 37, 977–985.CrossRefPubMedGoogle Scholar
  30. Poggio, T., Mutch, J., Leibo, J., Rosasco, L., Tacchetti, A. (2012). The computational magic of the ventral stream: Sketch of a theory (and why some deep architectures work). CSAIL TR 035, MIT.Google Scholar
  31. Quine, W.V.O. (1969). Natural kinds. In: Ontological relativity and other essays, (pp. 114–138). New York: Columbia University Press.Google Scholar
  32. Schaffer, J. (2009). The metaphysics of causation In Zalta, E. N. (Ed.), The Stanford Encyclopedia of Philosophy. (Spring 2009 ed.)Google Scholar
  33. Shepard, R.N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 1317–1323.CrossRefPubMedGoogle Scholar
  34. Shepard, R.N., & Chipman, S. (1970). Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology, 1, 1–17.CrossRefGoogle Scholar
  35. Singh, S., Lewis, R.L., Barto, A.G. (2010). Intrinsically motivated reinforcement learning: an evolutionary perspective. IEEE Transactions on Autonomous Mental Development, 2, 70–82.CrossRefGoogle Scholar
  36. Tenenbaum, J.B., & Griffiths, T.L. (2001). Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences, 24, 629–641.PubMedGoogle Scholar
  37. Watanabe, S. (1969). Knowing and Guessing: A Quantitative Study of Inference and Information. New York: Wiley.Google Scholar
  38. Woergoetter, W., & Porr, B. (2007). Reinforcement learning. Scholarpedia, 3(3), 1448.CrossRefGoogle Scholar
  39. Yamins, D.L., Hong, H., Cadieu, C., Solomon, E.A., Seibert, D., Dicarlo, J.J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Science, 111, 8619–8624.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of PsychologyCornell UniversityIthacaUSA

Personalised recommendations