Psychonomic Bulletin & Review

, Volume 22, Issue 3, pp 815–823 | Cite as

Distal prosody affects learning of novel words in an artificial language

  • Tuuli H. Morrill
  • J. Devin McAuley
  • Laura C. Dilley
  • Patrycja A. Zdziarska
  • Katherine B. Jones
  • Lisa D. Sanders
Brief Report


The distal prosodic patterning established at the beginning of an utterance has been shown to influence downstream word segmentation and lexical access. In this study, we investigated whether distal prosody also affects word learning in a novel (artificial) language. Listeners were exposed to syllable sequences in which the embedded words were either congruent or incongruent with the distal prosody of a carrier phrase. Local segmentation cues, including the transitional probabilities between syllables, were held constant. During a test phase, listeners rated the items as either words or nonwords. Consistent with the perceptual grouping of syllables being predicted by distal prosody, congruent items were more likely to be judged as words than were incongruent items. The results provide the first evidence that perceptual grouping affects word learning in an unknown language, demonstrating that distal prosodic effects may be independent of lexical or other language-specific knowledge.


Speech perception Language acquisition Word segmentation Distal prosody 


Author note

We thank Neelima Wagley, Ashley Elliston, Brian Chivers, and Mitchell Reddan for assistance with the stimulus creation and experiment running. This work was partially supported by NSF CAREER Grant No. BCS-0874653 to L.C.D., the Department of Psychology at Michigan State University, and a Michigan State University Provost Undergraduate Research Initiative grant to J.D.M. and P.A.Z.


  1. Adams, T. M. (2010, May). Prosodic transfer and phonological learning in a second language fluent speech segmentation task. Paper presented at Speech Prosody 2010, 5th International Conference, Chicago, IL.Google Scholar
  2. Akker, E., & Cutler, A. (2003). Prosodic cues to semantic structure in native and nonnative listening. Language and Cognition, 6, 81–96.CrossRefGoogle Scholar
  3. Barakat, B. K., Seitz, A. R., & Shams, L. (2013). The effect of statistical learning on internal stimulus representation: Predictable items are enhanced even when not predicted. Cognition, 129, 205–211. doi: 10.1016/j.cognition.2013.07.003 CrossRefPubMedGoogle Scholar
  4. Bates, D., Maechler, M., & Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes [Software]. Retrieved from
  5. Boersma, P., & Weenink, D. (2012). Praat: Doing phonetics by computer [Computer program]. Retrieved from
  6. Brent, M. R., & Cartwright, T. A. (1996). Distributional regularity and phonotactic constraints are useful for segmentation. Cognition, 61, 93–125.CrossRefPubMedGoogle Scholar
  7. Christophe, A., Gout, A., Peperkamp, S., & Morgan, J. (2003). Discovering words in the continuous speech stream: The role of prosody. Journal of Phonetics, 31, 585–598.CrossRefGoogle Scholar
  8. Creel, S. C., Tanenhaus, M. K., & Aslin, R. (2006). Consequences of lexical stress on learning an artificial lexicon. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 15–32.PubMedGoogle Scholar
  9. Cutler, A., & Butterfield, S. (1992). Rhythmic cues to speech segmentation: Evidence from juncture misperception. Journal of Memory and Language, 31, 218–236.CrossRefGoogle Scholar
  10. Cutler, A., & Carter, D. M. (1987). The predominance of strong initial syllables in the English vocabulary. Computer Speech and Language, 2, 133–142.CrossRefGoogle Scholar
  11. Cutler, A., Mehler, J., Norris, D., & Segui, J. (1992). The monolingual nature of speech segmentation by bilinguals. Cognitive Psychology, 24, 381–410.CrossRefPubMedGoogle Scholar
  12. Dilley, L. C., Mattys, S., & Vinke, L. (2010). Potent prosody: Comparing the effects of distal prosody, proximal prosody, and semantic context on word segmentation. Journal of Memory and Language, 63, 274–294.CrossRefGoogle Scholar
  13. Dilley, L. C., & McAuley, J. D. (2008). Distal prosodic context affects word segmentation & lexical processing. Journal of Memory and Language, 59, 294–311.CrossRefGoogle Scholar
  14. Dupoux, E., Pallier, C., Sebastian, N., & Mehler, J. (1997). A destressing “deafness” in French? Journal of Memory and Language, 36, 406–421. doi: 10.1006/jmla.1996.2500 CrossRefGoogle Scholar
  15. Emberson, L. L., Liub, R., & Zevinc, J. D. (2013). Is statistical learning constrained by lower level perceptual organization? Cognition, 128, 82–102.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Endress, A. D., Scholl, B. J., & Mehler, J. (2005). The role of salience in the extraction of algebraic rules. Journal of Experimental Psychology: General, 134, 406–419.CrossRefGoogle Scholar
  17. Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12, 499–504.CrossRefPubMedGoogle Scholar
  18. Goetry, V., & Kolinsky, R. (2000). The role of rhythmic cues for speech segmentation in monolingual and bilingual listeners. Psychologica Belgica, 40, 115–152.Google Scholar
  19. Hay, J., Pelucchi, B., Estes, K. G., & Saffran, J. R. (2012). Linking sounds to meanings: Infant statistical learning in a natural language. Cognitive Psychology, 63, 93–106.CrossRefGoogle Scholar
  20. Johnson, K. (2011). Quantitative methods in linguistics. Malden, MA: Blackwell.Google Scholar
  21. Johnson, E. K., & Jusczyk, P. W. (2001). Word segmentation by 8-month olds: When speech cues count more than statistics. Journal of Memory and Language, 44, 548–567.CrossRefGoogle Scholar
  22. Johnson, E. K., & Seidl, A. (2008). Clause segmentation by 6-month-old infants: A crosslinguistic perspective. Infancy, 13, 440–455.CrossRefGoogle Scholar
  23. Johnson, E. K., & Seidl, A. H. (2009). At 11 months, prosody still outranks statistics. Developmental Science, 12, 131–141. doi: 10.1111/j.1467-7687.2008.00740.x CrossRefPubMedGoogle Scholar
  24. Jusczyk, P. W., Cutler, A., & Redanz, N. J. (1993). Infants’ preference for the predominant stress patterns of English words. Child Development, 64, 675–687. doi: 10.1111/j.1467-8624.1993.tb02935.x CrossRefPubMedGoogle Scholar
  25. Langus, A., Marchetto, E., Hoffmann Bion, R. A., & Nespor, M. (2012). Can prosody be used to discover hierarchical structure in continuous speech? Journal of Memory and Language, 66, 285–306. doi: 10.1016/j.jml.2011.09.004 CrossRefGoogle Scholar
  26. Mattys, S. L., Jusczyk, P. W., Luce, P. A., & Morgan, J. L. (1999). Phonotactic and prosodic effects on word segmentation in infants. Cognitive Psychology, 38, 465–494.CrossRefPubMedGoogle Scholar
  27. Newport, E. L., & Aslin, R. (2004). Learning at a distance: I. Statistical learning of non-adjacent dependencies. Cognitive Psychology, 48, 127–162.CrossRefPubMedGoogle Scholar
  28. Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27–52.CrossRefPubMedGoogle Scholar
  29. Saffran, J. R., Newport, E. L., & Aslin, R. (1996). Word segmentation: The role of distributional cues. Journal of Memory and Language, 35, 606–621.CrossRefGoogle Scholar
  30. Sanders, L. D., & Neville, H. J. (2002). Speech segmentation by native and non-native speakers: The use of lexical, syntactic, and stress-pattern cues. Journal of Speech, Language, and Hearing Research, 45, 1301–1321.CrossRefGoogle Scholar
  31. Sanders, L. D., & Neville, H. J. (2003). An ERP study of continuous speech processing: II. Segmentation, semantics and syntax in non-native speakers. Cognitive Brain Research, 15, 214–227.CrossRefPubMedGoogle Scholar
  32. Shukla, M., Nespor, M., & Mehler, J. (2007). An interaction between prosody and statistics in the segmentation of fluent speech. Cognitive Psychology, 54, 1–32. doi: 10.1016/j.cogpsych.2006.04.002 CrossRefPubMedGoogle Scholar
  33. Shukla, M., White, K. S., & Aslin, R. N. (2011). Prosody guides the rapid mapping of auditory word forms onto visual objects in 6-mo-old infants. Proceedings of the National Academy of Sciences, 108, 6038–6043.CrossRefGoogle Scholar
  34. Swingley, D. (2005). Statistical clustering and the contents of the infant vocabulary. Cognitive Psychology, 50, 86–132.CrossRefPubMedGoogle Scholar
  35. Toro, J. M., Pons, F., Hoffmann Bion, R. A., & Sebastián-Gallés, N. (2011). The contribution of language-specific knowledge in the selection of statistically-coherent word candidates. Journal of Memory and Language, 64, 171–180.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Tuuli H. Morrill
    • 1
  • J. Devin McAuley
    • 2
  • Laura C. Dilley
    • 3
  • Patrycja A. Zdziarska
    • 2
  • Katherine B. Jones
    • 2
  • Lisa D. Sanders
    • 4
  1. 1.Program in Linguistics, Department of EnglishGeorge Mason UniversityFairfaxUSA
  2. 2.Department of PsychologyMichigan State UniversityEast LansingUSA
  3. 3.Department of Communicative Sciences and DisordersMichigan State UniversityEast LansingUSA
  4. 4.Department of PsychologyUniversity of MassachusettsAmherstUSA

Personalised recommendations