Skip to main content

Advertisement

Log in

Processing structure in language and music: a case for shared reliance on cognitive control

  • Theoretical Review
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

The relationship between structural processing in music and language has received increasing interest in the past several years, spurred by the influential Shared Syntactic Integration Resource Hypothesis (SSIRH; Patel, Nature Neuroscience, 6, 674–681, 2003). According to this resource-sharing framework, music and language rely on separable syntactic representations but recruit shared cognitive resources to integrate these representations into evolving structures. The SSIRH is supported by findings of interactions between structural manipulations in music and language. However, other recent evidence suggests that such interactions also can arise with nonstructural manipulations, and some recent neuroimaging studies report largely nonoverlapping neural regions involved in processing musical and linguistic structure. These conflicting results raise the question of exactly what shared (and distinct) resources underlie musical and linguistic structural processing. This paper suggests that one shared resource is prefrontal cortical mechanisms of cognitive control, which are recruited to detect and resolve conflict that occurs when expectations are violated and interpretations must be revised. By this account, musical processing involves not just the incremental processing and integration of musical elements as they occur, but also the incremental generation of musical predictions and expectations, which must sometimes be overridden and revised in light of evolving musical input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. It is worth noting that, while Basso and Capitani’s (1985) patient NS did show preserved harmonic processing despite quite severe global aphasia, it is not actually clear whether his ability to process linguistic structure was deficient because his severe anomia and apraxia make it difficult to evaluate his syntactic processing abilities per se. In fact, we know of no unambiguous reports of agrammatic individuals who show preserved harmonic processing in music. In addition, there is at least some evidence that agrammatism is associated with harmonic processing deficits in online tasks (Patel et al., 2008).

  2. See the Conclusions section below for discussion of some exceptions to this generalization.

  3. It seems unlikely that multiple musical (or linguistic) analyses are consciously available simultaneously; instead, musically ambiguous stimuli might be better construed as cases of multistability, such as the Necker cube, where only one interpretation can be experienced at a time (Repp, 2007). However, it remains possible that mechanisms of musical parsing construct and consider multiple analyses at some unconscious level of representation.

  4. For additional examples and a taxonomy of different types of metrical ambiguity, see Justin London’s collected list of “metric fakeouts,” available from http://people.carleton.edu/~jlondon/.

  5. It is important to note that these cognitive control advantages (and the neuroanatomical differences discussed below) have largely been reported in correlational studies; thus, it is possible that they reflect—at least in part—preexisting differences between people who do and do not decide to pursue musical training (e.g., Corrigall et al., 2013; but see Norton et al., 2005).

References

  • Abdul-Kareem, I. A., Stancak, A., Parkes, L. M., & Sluming, V. (2011). Increased gray matter volume of left Pars Opercularis in male orchestral musicians correlate positively with years of musical performance. Journal of Magnetic Resonance Imaging, 33(1), 24–32. doi:10.1002/jmri.22391

    Article  PubMed  Google Scholar 

  • Abrams, D. A., Bhatara, A., Ryali, S., Balaban, E., Levitin, D. J., & Menon, V. (2011). Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. Cerebral Cortex, 21(7), 1507–1518. doi:10.1093/cercor/bhq198

    Article  PubMed Central  PubMed  Google Scholar 

  • Aron, A. R. (2008). Progress in executive-function research. Current Directions in Psychological Science, 17(2), 124–129.

    Article  Google Scholar 

  • Badre, D., & D’Esposito, M. D. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews Neuroscience, 10, 659–669.

    Article  PubMed Central  PubMed  Google Scholar 

  • Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the control of memory. Neuropsychologia, 45(13), 2883–2901.

    Article  PubMed  Google Scholar 

  • Basso, A., & Capitani, E. (1985). Spared musical abilities in a conductor with global aphasia and ideomotor apraxia. Journal of Neurology, Neurosurgery and Psychiatry, 48(5), 407–412. doi:10.1136/jnnp.48.5.407

    Article  PubMed Central  PubMed  Google Scholar 

  • Bates, E., & MacWhinney, B. (1989). Functionalism and the competition model. In B. MacWhinney & E. Bates (Eds.), The Crosslinguistic Study of Sentence Processing (pp. 3–73). New York: Cambridge University Press.

  • Beauchamp, M. S., Haxby, J. V., Jennings, J. E., & DeYoe, E. A. (1999). An fMRI version of the Farnsworth-Munsell 100-hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cerebral Cortex, 9, 257–263.

    Article  PubMed  Google Scholar 

  • Bedny, M., Hulbert, J. C., & Thompson-Schill, S. L. (2007). Understanding words in context: The role of Broca’s area in word comprehension. Brain Research, Special Issue: Mysteries of Meaning, 1146, 101–114.

    Google Scholar 

  • Bernstein, L. (1976). The Unanswered Question: Six Talks at Harvard. Cambridge: Harvard University Press.

  • Besson, M., Faïta, F., Peretz, I., Bonnel, A.-M., & Requin, J. (1998). Singing in the brain: Independence of lyrics and tunes. Psychological Science, 9(6), 494–498.

    Article  Google Scholar 

  • Bialystok, E., Craik, F. I. M., Green, D. W., & Gollan, T. H. (2009). Bilingual minds. Psychological Science in the Public Interest, 10(3), 89–129. doi:10.1177/1529100610387084

    Article  Google Scholar 

  • Bialystok, E., & DePape, A. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565–574.

    PubMed  Google Scholar 

  • Blake, R. (1982). The Monk piano style. In R. van der Bliek (Ed.), The Thelonious Monk Reader (pp. 248–260). New York: Oxford University Press.

    Google Scholar 

  • Bonnel, A.-M., Faita, F., Peretz, I., & Besson, M. (2001). Divided attention between lyrics and tunes of operatic songs: Evidence for independent processing. Perception & Psychophysics, 63(7), 1201–1213.

    Article  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.

    Article  PubMed  Google Scholar 

  • Brandt, A. K., Gebrian, M., & Slevc, L. R. (2012). Music and early language acquisition. Frontiers in Psychology, 3, 1–17. doi:10.3389/fpsyg.2012.00327

    Article  Google Scholar 

  • Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge: MIT Press.

  • Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33, 301–311.

    Article  PubMed  Google Scholar 

  • Butler, M. J. (2001). Turning the beat around: Reinterpretation, metrical dissonance, and asymmetry in electronic dance music. Music Theory Online, 7(6).

  • Butler, M. J. (2006). Unlocking the groove: Rhythm, meter, and musical design in electronic dance music. Bloomington: Indiana University Press.

    Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge: MIT Press.

    Google Scholar 

  • Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101.

    Article  PubMed  Google Scholar 

  • Collins, T., Tillmann, B., Barrett, F. S., Delbé, C., & Janata, P. (2014). A combined model of sensory and cognitive representations underlying tonal expectations in music: From audio signals to behavior. Psychological Review, 121(1), 33–65.

    Article  PubMed  Google Scholar 

  • Cook, N. (1987). The perception of large-scale tonal closure. Music Perception, 5(2), 197–205.

    Article  Google Scholar 

  • Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 1–10. doi:10.3389/fpsyg.2013.00222

    Article  Google Scholar 

  • Corrigall, K. A., & Trainor, L. J. (2010). Musical enculturation in preschool children: Acquisition of key and harmonic knowledge. Music Perception, 28(2), 195–200.

    Article  Google Scholar 

  • Deutsch, D. (1987). Illusions for stereo headphones. Audio Magazine, 36–48.

  • Deutsch, D. (1999). Grouping mechanisms in music. In D. Deutsch (Ed.), The psychology of music (2nd ed., pp. 299–348). San Diego, CA: Academic Press.

  • Dowling, W. J., Lung, K. M., & Herrbold, S. (1987). Aiming attention in pitch and time in the perception of interleaved melodies. Perception and Psychophysics, 41(6), 642–656.

    Article  PubMed  Google Scholar 

  • Elton, A., & Gao, W. (2014). Divergent task-dependent functional connectivity of executive control and salience networks. Cortex, 51, 56–66. doi:10.1016/j.cortex.2013.10.012

    Article  PubMed  Google Scholar 

  • Escoffier, N., & Tillmann, B. (2008). The tonal function of a task-irrelevant chord modulates speed of visual processing. Cognition, 107(3), 1070–1083.

    Article  PubMed  Google Scholar 

  • Ettlinger, M., Margulis, E. H., & Wong, P. C. M. (2011). Implicit memory in music and language. Frontiers in Psychology: Auditory Cognitive Neuroscience, 2, 1–10. doi:10.3389/fpsyg.2011.00211

  • Fadiga, L., Craighero, L., & D’ausilio, A. (2009). Broca’s area in language, action, and music. Annals of the New York Academy of Sciences, 1169, 448–458.

    Article  PubMed  Google Scholar 

  • Farag, C., Troiani, V., Bonner, M., Powers, C., Avants, B., Gee, J., & Grossman, M. (2010). Hierarchical organization of scripts: Converging evidence from FMRI and frontotemporal degeneration. Cerebral Cortex, 20(10), 2453–2463.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fazio, P., Cantagallo, A., Craighero, L., D’ausilio, A., Roy, A. C., Pozzo, T., … Fadiga, L. (2009). Encoding of human action in Broca’s area. Brain, 132(7), 1980–1988.

  • Featherstone, C. R., Morrison, C. M., Waterman, M. G., & MacGregor, L. J. (2013). Semantics, syntax, or neither? A case for resolution in the interpretation of N500 and P600 responses to harmonic incongruities. PLoS ONE, 8(11), 1–13. doi:10.1371/journal.pone.0076600

    Article  Google Scholar 

  • Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings of the National Academy of Sciences, 108, 16428–16433. doi:10.1073/pnas.1112937108

    Article  Google Scholar 

  • Fedorenko, E., & Kanwisher, N. (2009). Neuroimaging of language: Why hasn’t a clearer picture emerged? Language and Linguistics Compass, 3, 839–865. doi:10.1111/j.1749-818x.2009.00143.x

    Article  Google Scholar 

  • Fedorenko, E., McDermott, J. H., Norman-Haignere, S., & Kanwisher, N. (2012). Sensitivity to musical structure in the human brain. Journal of Neurophysiology, 108(12), 3289–3300. doi:10.1152/jn.00209.2012

    Article  PubMed Central  PubMed  Google Scholar 

  • Fedorenko, E., Patel, A. D., Casasanto, D., Winawer, J., & Gibson, E. (2009). Structural integration in language and music: Evidence for a shared system. Memory and Cognition, 37(1), 1–9. doi:10.3758/MC.37.1.1

    Article  PubMed  Google Scholar 

  • Fernandez-Duque, D. (2009). Cognitive and neural underpinnings of syntactic complexity. In T. Givon & M. Shibatani (Eds.), The genesis of syntactic complexity (pp. 433–460). Philadelphia, PA: John Benjamins Publishing.

    Chapter  Google Scholar 

  • Ferreira, F., & Clifton, C., Jr. (1986). The independence of syntactic processing. Journal of Memory and Language, 25(3), 348–368.

    Article  Google Scholar 

  • Fitch, W. T., & Martins, M. D. (2014). Hierarchical processing in music, language, and action: Lashley revisited. Annals of the New York Academy of Sciences, 1–18. doi:10.1111/nyas.12406

  • Fiveash, A., & Pammer, K. (2014). Music and language: Do they draw on similar syntactic working memory resources? Psychology of Music, 42(2), 190–209.

    Article  Google Scholar 

  • Francois, C., & Schön, D. (2011). Musical expertise boosts implicit learning of both musical and linguistic structures. Cerebral Cortex, 21(10), 2357–2365.

    Article  PubMed  Google Scholar 

  • Frazier, L. (1987). Sentence processing: A tutorial review. In M. Colheart (Ed.), Attention and performance XII (pp. 559–586). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 1357–1392.

    Article  PubMed  Google Scholar 

  • Friedrich, R., & Friederici, A. D. (2009). Mathematical logic in the human brain: syntax. PLoS ONE, 4(5), 1–7.

    Article  Google Scholar 

  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240–9245.

    PubMed  Google Scholar 

  • Gläscher J., Adolphs, R., Damasio, H., Bechara, A., Rudrauf, D., Calamia, M., … Tranel, D. (2012). Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proceedings of the National Academy of Sciences, 109(36), 14681–14686.

  • Gomez, R. L., & Gerken, L. (1999). Artificial grammar learning by 1-year-olds leads to specific and abstract knowledge. Cognition, 70, 109–135.

    Article  PubMed  Google Scholar 

  • Grahn, J. A. (2012). Advances in neuroimaging techniques: Implications for the shared syntactic integration resource hypothesis. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 235–241). Oxford: Oxford University Press.

    Google Scholar 

  • Grodzinsky, Y., & Santi, A. (2008). The battle for Broca’s region. Trends in Cognitive Science, 12(12), 474–480.

    Article  Google Scholar 

  • Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9(9), 416–423.

  • Hagoort, P. (2013). MUC (memory, unification, control) and beyond. Frontiers in Psychology, 4, 416. doi:10.3389/fpsyg.2013.00416

  • Hamanaka, M., Hirata, K., & Tojo, S. (2006). Implementing “a generative theory of tonal music”. Journal of New Music Research, 35(4), 249–277.

    Article  Google Scholar 

  • Hamilton, A. C., & Martin, R. C. (2005). Dissociations among tasks involving inhibition: A single case study. Cognitive, Affective and Behavioral Neuroscience, 5(1), 1–13.

    Article  PubMed  Google Scholar 

  • Hannon, E. E., & Trainor, L. J. (2007). Music acquisition: Effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11(11), 466–472.

    Article  PubMed  Google Scholar 

  • Harding, E., Sammler, D., D’Ausilio, A., Friederici, A., Fadiga, L., & Koelsch, S. (2011). Explicit action perception shares resources with music syntax: A controlled behavioral study. Poster presented at The Neurosciences and Music IV: Learning and Memory, Edinburgh, UK.

  • Hesselink, N. D. (2013). Radiohead’s “pyramid song”: Ambiguity, rhythm, and participation. Music Theory Online, 19, 1–25.

    Google Scholar 

  • Hoch, L., Poulin-Charronnat, B., & Tillmann, B. (2011). The influence of task-irrelevant music on language processing: Syntactic and semantic structures. Frontiers in Psychology, 2, 1–10. doi:10.3389/fpsyg.2011.00112

    Article  Google Scholar 

  • Hoch, L., & Tillmann, B. (2012). Shared structural and temporal integration resources for music and arithmetic processing. Acta Psychologica, 140(3), 230–235.

    Article  PubMed  Google Scholar 

  • Hussey, E. K., & Novick, J. M. (2012). The benefits of executive control training and the implications for language processing. Frontiers in Psychology, 3, 1–14. doi:10.3389/fpsyg.2012.00158

  • Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387(2), 167–178.

    Article  PubMed  Google Scholar 

  • Iverson, P. (1995). Auditory stream segregation by musical timbre: Effects of static and dynamic acoustic attributes. Journal of Experimental Psychology, 21(4), 751–763.

    PubMed  Google Scholar 

  • Jackendoff, R. S. (1991). Musical parsing and musical affect. Music Perception, 9(2), 199–230.

    Article  Google Scholar 

  • Jackendoff, R. S. (2009). Parallels and nonparallels between language and music. Music Perception, 26(3), 195–204. doi:10.1525/MP.2009.26.3.195

    Article  Google Scholar 

  • Janata, P., Tillmann, B., & Bharucha, J. J. (2002). Listening to polyphonic music recruits domain-general attention and working memory circuits. Cognitive, Affective and Behavioral Neuroscience, 2(2), 121–140.

    Article  PubMed  Google Scholar 

  • January, D., Trueswell, J. C., & Thompson-Schill, S. L. (2009). Co-localization of stroop and syntactic ambiguity resolution in Broca’s area: Implications for the neural basis of sentence processing. Journal of Cognitive Neuroscience, 21(12), 2434–2444.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jentschke, S., Koelsch, S., Sallat, S., & Friederici, A. D. (2008). Children with specific language impairment also show impairment of music-syntactic processing. Journal of Cognitive Neuroscience, 20(11), 1940–1951.

    Article  PubMed  Google Scholar 

  • Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inihibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 8410–8413.

    Article  PubMed Central  PubMed  Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–354.

    Article  PubMed  Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122–149.

    Article  PubMed  Google Scholar 

  • Katz, J., & Pesetsky, D. (2011). The Identity Thesis for Language and Music. Retrieved from http://ling.auf.net/lingbuzz/000959

  • Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.

    Article  PubMed  Google Scholar 

  • Khanna, M. M., & Boland, J. E. (2010). Children’s use of language context in lexical ambiguity resolution. The Quarterly Journal of Experimental Psychology, 63(1), 160–193.

    Article  PubMed  Google Scholar 

  • Klepousniotou, E., Gracco, V. L., & Pike, G. B. (2013). Pathways to lexical ambiguity: fMRI evidence for bilateral fronto-parietal involvement in language processing. Brain and Language, 131, 56–64.

    Article  PubMed  Google Scholar 

  • Koechlin, E., & Jubault, T. (2006). Broca’s area and the hierarchical organization of human behavior. Neuron, 50(6), 963–974.

    Article  PubMed  Google Scholar 

  • Koechlin, E., & Summerfield, C. (2011). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–236.

    Article  Google Scholar 

  • Koelsch, S. (2011). Toward a neural basis of music perception—A review and update model. Frontiers in Psychology, 2, 1–20.

    Google Scholar 

  • Koelsch, S. (2012). Response to target article “Language, music, and the brain: A resource-sharing framework”. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 224–234). Oxford: Oxford University Press.

    Google Scholar 

  • Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005a). Adults and children processing music: An fMRI study. NeuroImage, 25(4), 1068–1076.

    Article  PubMed  Google Scholar 

  • Koelsch, S., Gunter, T. C., von Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks: A cortical “language-network” serves the processing of music. NeuroImage, 17(2), 956–966.

    Article  PubMed  Google Scholar 

  • Koelsch, S., Gunter, T. C., Wittfoth, M., & Sammler, D. (2005b). Interaction between syntax processing in language and in music: An ERP Study. Journal of Cognitive Neuroscience, 17(10), 1565–1577.

    Article  PubMed  Google Scholar 

  • Koelsch, S., Schulze, K., Sammler, D., Fritz, T., Muller, K., & Gruber, O. (2009). Functional architecture of verbal and tonal working memory: An FMRI study. Human Brain Mapping, 30(3), 859–873.

    Article  PubMed  Google Scholar 

  • Kouneiher, F., Charron, S., & Koechlin, E. (2009). Motivation and cognitive control in the human prefrontal cortex. Nature Neuroscience, 12(7), 939–945.

    Article  PubMed  Google Scholar 

  • Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831–843.

    Article  PubMed  Google Scholar 

  • Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1–37.

    Article  Google Scholar 

  • Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339–354.

    Article  Google Scholar 

  • Lerdahl, F. A. (2001). Tonal pitch space. New York: Oxford University Press.

    Google Scholar 

  • Lerdahl, F. A., & Jackendoff, R. S. (1983). A generative theory of tonal music. Cambridge: MIT Press.

    Google Scholar 

  • Levitin, D. J., & Menon, V. (2003). Musical structure is processed in “language” areas of the brain: A possible role for Brodmann Area 47 in temporal coherence. NeuroImage, 20, 2142–2152.

    Article  PubMed  Google Scholar 

  • Lewin, D. (1986). Music theory, phenomenology, and modes of perception. Music Perception, 3(4), 327–392.

    Article  Google Scholar 

  • Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10(10), 44–54.

    Article  Google Scholar 

  • London, J. (2012a). Hearing in time: Psychological aspects of musical meter. New York: Oxford University Press.

    Book  Google Scholar 

  • London, J. (2012b). Schemas, not syntax: A reply to Patel. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 242–247). Oxford: Oxford University Press.

    Google Scholar 

  • Longuet-Higgins, H. C. (1976). The perception of melodies. Nature, 263, 646–653.

    Article  Google Scholar 

  • Loui, P. (2012). Learning and liking of melody and harmony: Further studies in artificial grammar. Topics in Cognitive Science, 4, 1–14.

    Article  Google Scholar 

  • Loui, P., & Wessel, D. L. (2007). Harmonic expectation and affect in Western music: Effects of attention and training. Perception & Psychophysics, 69(7), 1084–1092.

    Article  Google Scholar 

  • Loui, P., Wessel, D. L., & Hudson Kam, C. L. (2010). Humans rapidly learn grammatical structure in a new musical scale. Music Perception, 27(5), 377–388.

    Article  PubMed Central  PubMed  Google Scholar 

  • Loui, P., Wu, E. H., Wessel, D. L., & Knight, R. T. (2009). A generalized mechanism for perception of pitch patterns. Journal of Neuroscience, 29(2), 454–459.

    Article  PubMed Central  PubMed  Google Scholar 

  • MacDonald, M. C., Pearlmutter, N. J., & Seidenberg, M. S. (1994). Lexical nature of syntactic ambiguity resolution. Psychological Review, 101(4), 676–703.

    Article  PubMed  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163–203.

    Article  PubMed  Google Scholar 

  • Maruyama, M., Pallier, C., Jobert, A., Sigman, M., & Dehaene, S. (2012). The cortical representation of simple mathematical expressions. NeuroImage, 61(4), 1444–1460.

    Article  PubMed  Google Scholar 

  • Masataka, N., & Perlovsky, L. (2013). Cognitive interference can be mitigated by consonant music and facilitated by dissonant music. Scientific Reports, 3, 1–6.

    Article  Google Scholar 

  • McClelland, J. L., St. John, M., & Taraban, R. (1989). Sentence comprehension: A parallel distributed processing approach. Language and Cognitive Processes, 4, 287–335.

    Article  Google Scholar 

  • McDonald, C. (2000). Exploring modal subversions in alternative music. Popular Music, 19(3), 355–363.

    Article  Google Scholar 

  • McMullen, E., & Saffran, J. R. (2004). Music and language: A developmental comparison. Music Perception, 21(3), 289–311.

    Article  Google Scholar 

  • Micheyl, C., Hanson, C., Demany, L., Shamma, S., & Oxenham, A. J. (2013). Auditory stream segregation for alternating and synchronous tones. Journal of Experimental Psychology: Human Perception and Performance, 39(6), 1568–1580. doi:10.1037/a0032241

    PubMed Central  PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  Google Scholar 

  • Minati, L., Rosazza, C., D’incerti, L., Pietrocini, E., Valentini, L., Scaioli, V., … Bruzzone, M. G. (2008). FMRI/ERP of musical syntax: comparison of melodies and unstructured note sequences. NeuroReport, 19(14), 1381–1385.

  • Moore, B. C., & Gockel, H. E. (2012). Properties of auditory stream formation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 367, 919–931.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22, 1425–1433. doi:10.1177/0956797611416999

    Article  PubMed Central  PubMed  Google Scholar 

  • Norton, A., Winner, E., Cronin, K., Overy, K., Lee, D. J., & Schlaug, G. (2005). Are there pre-existing neural, cognitive, or motoric markers for musical ability? Brain and Cognition, 59(2), 124–134.

    Article  PubMed  Google Scholar 

  • Novick, J. M., Kan, I. P., Trueswell, J. C., & Thompson-Schill, S. L. (2009). A case for conflict across multiple domains: Memory and language impairments following damage to ventrolateral prefrontal cortex. Cognitive Neuropsychology, 26(6), 527–567.

    Article  PubMed Central  PubMed  Google Scholar 

  • Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2005). Cognitive control and parsing: Reexamining the role of Broca’s area in sentence comprehension. Cognitive, Affective and Behavioral Neuroscience, 5(3), 263–281.

    Article  PubMed  Google Scholar 

  • Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2010). Broca’s area and language processing: Evidence for the cognitive control connection. Language and Linguistics Compass, 4(10), 906–924.

    Article  Google Scholar 

  • Oechslin, M. S., Van De Ville, D., Lazeyras, F., Hauert, C.-A., & James, C. E. (2013). Degree of musical expertise modulates higher order brain functioning. Cerebral Cortex, 23, 2213–2224.

    Article  PubMed  Google Scholar 

  • Pallesen, K. J., Brattico, E., Bailey, C. J., Korvenoja, A., Koivisto, J., Gjedde, A., & Carlson, S. (2010). Cognitive control in auditory working memory is enhanced in musicians. PLoS ONE, 5, 1–12.

    Article  Google Scholar 

  • Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6, 674–681.

    Article  PubMed  Google Scholar 

  • Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.

    Google Scholar 

  • Patel, A. D. (2012). Language, music, and the brain: A resource-sharing framework. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 204–223). New York: Oxford University Press.

    Google Scholar 

  • Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717–733.

    Article  PubMed  Google Scholar 

  • Patel, A. D., Iversen, J. R., Wassenaar, M., & Hagoort, P. (2008). Musical syntactic processing in agrammatic Broca’s aphasia. Aphasiology, 22, 776–789. doi:10.1080/02687030701803804

    Article  Google Scholar 

  • Peretz, I. (1993). Auditory atonalia for melodies. Cognitive Neuropsychology, 10(1), 21–56.

    Article  Google Scholar 

  • Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100, 1–32.

    Article  PubMed  Google Scholar 

  • Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688–691.

    Article  PubMed  Google Scholar 

  • Perruchet, P., & Poulin-Charronnat, B. (2013). Challenging prior evidence for a shared syntactic processor for language and music. Psychonomic Bulletin and Review, 20(2), 310–317.

    Article  PubMed  Google Scholar 

  • Pickering, M. J., & van Gompel, R. P. G. (2006). Syntactic parsing. In M. J. Traxler & M. A. Gernsbacher (Eds.), Handbook of psycholinguistics (2nd ed., pp. 455–503). Amsterdam: Academic Press.

    Chapter  Google Scholar 

  • Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10, 15–35.

    Article  PubMed  Google Scholar 

  • Poulin-Charronnat, B., Bigand, E., Madurell, F., & Peereman, R. (2005). Musical structure modulates semantic priming in vocal music. Cognition, 94(3), B67–B78.

    Article  PubMed  Google Scholar 

  • Repp, B. H. (2007). Hearing a melody in different ways: Multistability of metrical interpretation, reflected in rate limits of sensorimotor synchronization. Cognition, 102, 434–454.

    Article  PubMed  Google Scholar 

  • Ripani, R. J. (2006). The New Blue Music: Changes in Rhythm & Blues, 1950-1999. Jackson: University Press of Mississippi..

  • Rodd, J. M., Johnsrude, I. S., & Davis, M. H. (2010). The role of domain-general frontal systems in language comprehension: Evidence from dual-task interference and semantic ambiguity. Brain and Language, 115(3), 182–188.

    Article  PubMed  Google Scholar 

  • Rogalsky, C., & Hickok, G. (2011). The role of Broca’s area in sentence comprehension. Journal of Cognitive Neuroscience, 23(7), 1664–1680.

    Article  PubMed  Google Scholar 

  • Rogalsky, C., Rong, F., Saberi, K., & Hickok, G. (2011). Functional anatomy of language and music perception: Temporal and structural factors investigated using functional Magnetic Resonance Imaging. The Journal of Neuroscience, 31(10), 3843–3852. doi:10.1523/JNEUROSCI.4515-10.2011

    Article  PubMed Central  PubMed  Google Scholar 

  • Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 35–53.

    Article  Google Scholar 

  • Rohrmeier, M., & Koelsch, S. (2012). Predictive information processing in music cognition. A critical review. International Journal of Psychophysiology, 83, 164–175.

    Article  PubMed  Google Scholar 

  • Rohrmeier, M., & Rebuschat, P. (2012). Implicit learning and acquisition of music. Topics in Cognitive Science, 4, 525–553.

    Article  PubMed  Google Scholar 

  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926–1928.

    Article  PubMed  Google Scholar 

  • Saffran, J. R., Senghas, A., & Trueswell, J. C. (2001). The acquisition of language by children. Proceedings of the National Academy of Sciences, 98(23), 12874–12875.

    Article  Google Scholar 

  • Sammler, D., Koelsch, S., & Friederici, A. D. (2011). Are left fronto-temporal brain areas a prerequisite for normal music-syntactic processing? Cortex, 47(6), 659–673.

    Article  PubMed  Google Scholar 

  • Sammler, D., Novembre, G., Koelsch, S., & Keller, P. E. (2013). Syntax in a pianist’s hand: ERP signatures of “embodied” syntax processing in music. Cortex, 49(5), 1325–1339.

    Article  PubMed  Google Scholar 

  • Schellenberg, E. G. (2011). Examining the association between music lessons and intelligence. British Journal of Psychology, 102, 283–302.

    Article  PubMed  Google Scholar 

  • Schellenberg, E. G., & Weiss, M. W. (2012). Music and cognitive abilities. In D. Deutsch (Ed.), The psychology of music (3rd ed., pp. 499–550). Amsterdam: Elsevier.

    Google Scholar 

  • Schenker, H. (1935/1979). Free composition. New York: Longman.

  • Scherzinger, M. (2010). Temporal geometries of an African music: A preliminary sketch. Music Theory Online, 16(4).

  • Schnur, T. T., Schwartz, M. F., Kimberg, D. Y., Hirshorn, E., Coslett, H. B., & Thompson-Schill, S. L. (2009). Localizing interference during naming: Convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. Proceedings of the National Academy of Sciences, 106(1), 322–327.

    Article  Google Scholar 

  • Schulze, K., Zysset, S., Mueller, K., Friederici, A. D., & Koelsch, S. (2011). Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Human Brain Mapping, 32(5), 771–783.

    Article  PubMed  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356. doi:10.1523/JNEUROSCI.5587-06.2007

  • Seger, C. A., Spiering, B. J., Sares, A. G., Quraini, S. I., Alpeter, C., David, J., & Thaut, M. H. (2013). Corticostriatal contributions to musical expectancy perception. Journal of Cognitive Neuroscience, 25(7), 1062–1077.

    Article  PubMed  Google Scholar 

  • Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79, 217–240. doi:10.1016/j.neuron.2013.07.007

    Article  PubMed Central  PubMed  Google Scholar 

  • Slevc, L. R. (2012). Language and music: Sound, structure, and meaning. Wiley Interdisciplinary Reviews: Cognitive Science, 3(4), 483–492.

    Article  Google Scholar 

  • Slevc, L. R., Reitman, J. G., & Okada, B. M. (2013). Syntax in music and language: The role of cognitive control. Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 3414–3419). Berlin, Germany: Cognitive Science Society.

  • Slevc, L. R., Rosenberg, J. C., & Patel, A. D. (2009). Making psycholinguistics musical: Self-paced reading time evidence for shared processing of linguistic and musical syntax. Psychonomic Bulletin and Review, 16(2), 374–381. doi:10.3758/16.2.374

    Article  PubMed  Google Scholar 

  • Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., & Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. NeuroImage, 17(3), 1613–1622.

    Article  PubMed  Google Scholar 

  • Smith, P. H. (2006). You reap what you sow: Some instances of rhythmic and harmonic ambiguity in Brahms. Music Theory Spectrum, 28(1), 57–97.

    Article  Google Scholar 

  • Steinbeis, N., & Koelsch, S. (2008). Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns. Cerebral Cortex, 18(5), 1169–1178.

    Article  PubMed  Google Scholar 

  • Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57(4), 421–457.

    PubMed  Google Scholar 

  • Stevens, C. J. (2012). Music perception and cognition: A review of recent cross-cultural research. Topics in Cognitive Science, 4, 653–667.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Article  Google Scholar 

  • Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632–1634.

    Article  PubMed  Google Scholar 

  • Temperley, D. (2001). The cognition of basic musical structures. Cambridge: MIT Press.

    Google Scholar 

  • Thompson, W. (1983). Functional ambiguity in musical structures. Music Perception, 1(1), 3–27.

    Article  Google Scholar 

  • Thompson-Schill, S. L., Jonides, J., Marshuetz, C., Smith, E. E., D’Esposito, M., Kan, I. P., … Swick, D. (2002). Effects of frontal lobe damage on interference effects in working memory. Cognitive, Affective, and Behavioral Neuroscience, 2(2), 109–120.

  • Thothathiri, M., Kim, A., Trueswell, J. C., & Thompson-Schill, S. L. (2012). Parametric effects of syntactic-semantic conflict in Broca’s area during sentence processing. Brain and Language, 120(3), 259–264.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tillmann, B. (2012). Music and language perception: Expectations, structural integration, and cognitive sequencing. Topics in Cognitive Science, 4, 568–584. doi:10.1111/j.1756-8765.2012.01209.x

    Article  PubMed  Google Scholar 

  • Tillmann, B., Bigand, E., & Madurell, F. (1998). Local versus global processing of harmonic cadences in the solution of musical puzzles. Psychological Research, 61, 157–174.

    Article  Google Scholar 

  • Tillmann, B., Janata, P., & Bharucha, J. J. (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16, 145–161.

    Article  PubMed  Google Scholar 

  • Tillmann, B., Koelsch, S., Escoffier, N., Bigand, E., Lalitte, P., Friederici, A. D., & von Cramon, D. Y. (2006). Cognitive priming in sung and instrumental music: Activation of inferior frontal cortex. NeuroImage, 31(4), 1771–1782.

    Article  PubMed  Google Scholar 

  • Travis, F., Harung, H. S., & Lagrosen, Y. (2011). Moral development, executive functioning, peak experiences and brain patterns in professional and amateur classical musicians: Interpreted in light of a unified theory of performance. Consciousness and Cognition, 20(4), 1256–1264.

    Article  PubMed  Google Scholar 

  • Vazan, P., & Schober, M. F. (2004). Detecting and resolving metrical ambiguity in a rock song upon multiple rehearings. Proceedings of the 8th International Conference on Music Perception and Cognition (pp. 426–432). Adelaide, Australia: Causal Productions.

  • Vuong, L. C., & Martin, R. C. (2011). LIFG-based attentional control and the resolution of lexical ambiguities in sentence context. Brain and Language, 116(1), 22–32.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vuust, P., Roepstorff, A., Wallentin, M., Mouridsen, K., & Østergaard, L. (2006). It don’t mean a thing… Keeping the rhythm during polyrhythmic tension, activates language areas (BA47). NeuroImage, 31(2), 832–841.

    Article  PubMed  Google Scholar 

  • Vuust, P., Wallentin, M., Mouridsen, K., Østergaard, L., & Roepstorff, A. (2011). Tapping polyrhythms in music activates language areas. Neuroscience Letters, 494(3), 211–216.

    Article  PubMed  Google Scholar 

  • Williamson, V. J., Baddeley, A., & Hitch, G. J. (2010). Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity. Memory and Cognition, 38(2), 163–175.

    Article  PubMed  Google Scholar 

  • Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–670. doi:10.1038/nmeth.1635

    Article  PubMed Central  PubMed  Google Scholar 

  • Ye, Z., & Zhou, X. (2008). Involvement of cognitive control in sentence comprehension: Evidence from ERPs. Brain Research, 1203, 103–115.

    Article  PubMed  Google Scholar 

  • Ye, Z., & Zhou, X. (2009). Executive control in language processing. Neuroscience and Biobehavioral Reviews, 33(8), 1168–1177.

    Article  PubMed  Google Scholar 

  • Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931–959.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank David Bashwiner, Nina Hsu, Eugene Montague, Mattson Ogg, Aniruddh Patel, Elizabeth Redcay, and Jason Reitman for helpful comments about earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Robert Slevc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slevc, L.R., Okada, B.M. Processing structure in language and music: a case for shared reliance on cognitive control. Psychon Bull Rev 22, 637–652 (2015). https://doi.org/10.3758/s13423-014-0712-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-014-0712-4

Keywords

Navigation