Psychonomic Bulletin & Review

, Volume 22, Issue 3, pp 637–652 | Cite as

Processing structure in language and music: a case for shared reliance on cognitive control

Theoretical Review

Abstract

The relationship between structural processing in music and language has received increasing interest in the past several years, spurred by the influential Shared Syntactic Integration Resource Hypothesis (SSIRH; Patel, Nature Neuroscience, 6, 674–681, 2003). According to this resource-sharing framework, music and language rely on separable syntactic representations but recruit shared cognitive resources to integrate these representations into evolving structures. The SSIRH is supported by findings of interactions between structural manipulations in music and language. However, other recent evidence suggests that such interactions also can arise with nonstructural manipulations, and some recent neuroimaging studies report largely nonoverlapping neural regions involved in processing musical and linguistic structure. These conflicting results raise the question of exactly what shared (and distinct) resources underlie musical and linguistic structural processing. This paper suggests that one shared resource is prefrontal cortical mechanisms of cognitive control, which are recruited to detect and resolve conflict that occurs when expectations are violated and interpretations must be revised. By this account, musical processing involves not just the incremental processing and integration of musical elements as they occur, but also the incremental generation of musical predictions and expectations, which must sometimes be overridden and revised in light of evolving musical input.

Keywords

Language Music Syntax Cognitive control Musical ambiguity 

References

  1. Abdul-Kareem, I. A., Stancak, A., Parkes, L. M., & Sluming, V. (2011). Increased gray matter volume of left Pars Opercularis in male orchestral musicians correlate positively with years of musical performance. Journal of Magnetic Resonance Imaging, 33(1), 24–32. doi:10.1002/jmri.22391 PubMedCrossRefGoogle Scholar
  2. Abrams, D. A., Bhatara, A., Ryali, S., Balaban, E., Levitin, D. J., & Menon, V. (2011). Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. Cerebral Cortex, 21(7), 1507–1518. doi:10.1093/cercor/bhq198 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Aron, A. R. (2008). Progress in executive-function research. Current Directions in Psychological Science, 17(2), 124–129.CrossRefGoogle Scholar
  4. Badre, D., & D’Esposito, M. D. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical? Nature Reviews Neuroscience, 10, 659–669.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the control of memory. Neuropsychologia, 45(13), 2883–2901.PubMedCrossRefGoogle Scholar
  6. Basso, A., & Capitani, E. (1985). Spared musical abilities in a conductor with global aphasia and ideomotor apraxia. Journal of Neurology, Neurosurgery and Psychiatry, 48(5), 407–412. doi:10.1136/jnnp.48.5.407 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bates, E., & MacWhinney, B. (1989). Functionalism and the competition model. In B. MacWhinney & E. Bates (Eds.), The Crosslinguistic Study of Sentence Processing (pp. 3–73). New York: Cambridge University Press.Google Scholar
  8. Beauchamp, M. S., Haxby, J. V., Jennings, J. E., & DeYoe, E. A. (1999). An fMRI version of the Farnsworth-Munsell 100-hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cerebral Cortex, 9, 257–263.PubMedCrossRefGoogle Scholar
  9. Bedny, M., Hulbert, J. C., & Thompson-Schill, S. L. (2007). Understanding words in context: The role of Broca’s area in word comprehension. Brain Research, Special Issue: Mysteries of Meaning, 1146, 101–114.Google Scholar
  10. Bernstein, L. (1976). The Unanswered Question: Six Talks at Harvard. Cambridge: Harvard University Press.Google Scholar
  11. Besson, M., Faïta, F., Peretz, I., Bonnel, A.-M., & Requin, J. (1998). Singing in the brain: Independence of lyrics and tunes. Psychological Science, 9(6), 494–498.CrossRefGoogle Scholar
  12. Bialystok, E., Craik, F. I. M., Green, D. W., & Gollan, T. H. (2009). Bilingual minds. Psychological Science in the Public Interest, 10(3), 89–129. doi:10.1177/1529100610387084 CrossRefGoogle Scholar
  13. Bialystok, E., & DePape, A. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565–574.PubMedGoogle Scholar
  14. Blake, R. (1982). The Monk piano style. In R. van der Bliek (Ed.), The Thelonious Monk Reader (pp. 248–260). New York: Oxford University Press.Google Scholar
  15. Bonnel, A.-M., Faita, F., Peretz, I., & Besson, M. (2001). Divided attention between lyrics and tunes of operatic songs: Evidence for independent processing. Perception & Psychophysics, 63(7), 1201–1213.CrossRefGoogle Scholar
  16. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.PubMedCrossRefGoogle Scholar
  17. Brandt, A. K., Gebrian, M., & Slevc, L. R. (2012). Music and early language acquisition. Frontiers in Psychology, 3, 1–17. doi:10.3389/fpsyg.2012.00327 CrossRefGoogle Scholar
  18. Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge: MIT Press.Google Scholar
  19. Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33, 301–311.PubMedCrossRefGoogle Scholar
  20. Butler, M. J. (2001). Turning the beat around: Reinterpretation, metrical dissonance, and asymmetry in electronic dance music. Music Theory Online, 7(6).Google Scholar
  21. Butler, M. J. (2006). Unlocking the groove: Rhythm, meter, and musical design in electronic dance music. Bloomington: Indiana University Press.Google Scholar
  22. Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge: MIT Press.Google Scholar
  23. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101.PubMedCrossRefGoogle Scholar
  24. Collins, T., Tillmann, B., Barrett, F. S., Delbé, C., & Janata, P. (2014). A combined model of sensory and cognitive representations underlying tonal expectations in music: From audio signals to behavior. Psychological Review, 121(1), 33–65.PubMedCrossRefGoogle Scholar
  25. Cook, N. (1987). The perception of large-scale tonal closure. Music Perception, 5(2), 197–205.CrossRefGoogle Scholar
  26. Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 1–10. doi:10.3389/fpsyg.2013.00222 CrossRefGoogle Scholar
  27. Corrigall, K. A., & Trainor, L. J. (2010). Musical enculturation in preschool children: Acquisition of key and harmonic knowledge. Music Perception, 28(2), 195–200.CrossRefGoogle Scholar
  28. Deutsch, D. (1987). Illusions for stereo headphones. Audio Magazine, 36–48.Google Scholar
  29. Deutsch, D. (1999). Grouping mechanisms in music. In D. Deutsch (Ed.), The psychology of music (2nd ed., pp. 299–348). San Diego, CA: Academic Press.Google Scholar
  30. Dowling, W. J., Lung, K. M., & Herrbold, S. (1987). Aiming attention in pitch and time in the perception of interleaved melodies. Perception and Psychophysics, 41(6), 642–656.PubMedCrossRefGoogle Scholar
  31. Elton, A., & Gao, W. (2014). Divergent task-dependent functional connectivity of executive control and salience networks. Cortex, 51, 56–66. doi:10.1016/j.cortex.2013.10.012 PubMedCrossRefGoogle Scholar
  32. Escoffier, N., & Tillmann, B. (2008). The tonal function of a task-irrelevant chord modulates speed of visual processing. Cognition, 107(3), 1070–1083.PubMedCrossRefGoogle Scholar
  33. Ettlinger, M., Margulis, E. H., & Wong, P. C. M. (2011). Implicit memory in music and language. Frontiers in Psychology: Auditory Cognitive Neuroscience, 2, 1–10. doi:10.3389/fpsyg.2011.00211
  34. Fadiga, L., Craighero, L., & D’ausilio, A. (2009). Broca’s area in language, action, and music. Annals of the New York Academy of Sciences, 1169, 448–458.PubMedCrossRefGoogle Scholar
  35. Farag, C., Troiani, V., Bonner, M., Powers, C., Avants, B., Gee, J., & Grossman, M. (2010). Hierarchical organization of scripts: Converging evidence from FMRI and frontotemporal degeneration. Cerebral Cortex, 20(10), 2453–2463.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Fazio, P., Cantagallo, A., Craighero, L., D’ausilio, A., Roy, A. C., Pozzo, T., … Fadiga, L. (2009). Encoding of human action in Broca’s area. Brain, 132(7), 1980–1988.Google Scholar
  37. Featherstone, C. R., Morrison, C. M., Waterman, M. G., & MacGregor, L. J. (2013). Semantics, syntax, or neither? A case for resolution in the interpretation of N500 and P600 responses to harmonic incongruities. PLoS ONE, 8(11), 1–13. doi:10.1371/journal.pone.0076600 CrossRefGoogle Scholar
  38. Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic processing in the human brain. Proceedings of the National Academy of Sciences, 108, 16428–16433. doi:10.1073/pnas.1112937108 CrossRefGoogle Scholar
  39. Fedorenko, E., & Kanwisher, N. (2009). Neuroimaging of language: Why hasn’t a clearer picture emerged? Language and Linguistics Compass, 3, 839–865. doi:10.1111/j.1749-818x.2009.00143.x CrossRefGoogle Scholar
  40. Fedorenko, E., McDermott, J. H., Norman-Haignere, S., & Kanwisher, N. (2012). Sensitivity to musical structure in the human brain. Journal of Neurophysiology, 108(12), 3289–3300. doi:10.1152/jn.00209.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Fedorenko, E., Patel, A. D., Casasanto, D., Winawer, J., & Gibson, E. (2009). Structural integration in language and music: Evidence for a shared system. Memory and Cognition, 37(1), 1–9. doi:10.3758/MC.37.1.1 PubMedCrossRefGoogle Scholar
  42. Fernandez-Duque, D. (2009). Cognitive and neural underpinnings of syntactic complexity. In T. Givon & M. Shibatani (Eds.), The genesis of syntactic complexity (pp. 433–460). Philadelphia, PA: John Benjamins Publishing.CrossRefGoogle Scholar
  43. Ferreira, F., & Clifton, C., Jr. (1986). The independence of syntactic processing. Journal of Memory and Language, 25(3), 348–368.CrossRefGoogle Scholar
  44. Fitch, W. T., & Martins, M. D. (2014). Hierarchical processing in music, language, and action: Lashley revisited. Annals of the New York Academy of Sciences, 1–18. doi:10.1111/nyas.12406
  45. Fiveash, A., & Pammer, K. (2014). Music and language: Do they draw on similar syntactic working memory resources? Psychology of Music, 42(2), 190–209.CrossRefGoogle Scholar
  46. Francois, C., & Schön, D. (2011). Musical expertise boosts implicit learning of both musical and linguistic structures. Cerebral Cortex, 21(10), 2357–2365.PubMedCrossRefGoogle Scholar
  47. Frazier, L. (1987). Sentence processing: A tutorial review. In M. Colheart (Ed.), Attention and performance XII (pp. 559–586). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  48. Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 1357–1392.PubMedCrossRefGoogle Scholar
  49. Friedrich, R., & Friederici, A. D. (2009). Mathematical logic in the human brain: syntax. PLoS ONE, 4(5), 1–7.CrossRefGoogle Scholar
  50. Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23(27), 9240–9245.PubMedGoogle Scholar
  51. Gläscher J., Adolphs, R., Damasio, H., Bechara, A., Rudrauf, D., Calamia, M., … Tranel, D. (2012). Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proceedings of the National Academy of Sciences, 109(36), 14681–14686.Google Scholar
  52. Gomez, R. L., & Gerken, L. (1999). Artificial grammar learning by 1-year-olds leads to specific and abstract knowledge. Cognition, 70, 109–135.PubMedCrossRefGoogle Scholar
  53. Grahn, J. A. (2012). Advances in neuroimaging techniques: Implications for the shared syntactic integration resource hypothesis. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 235–241). Oxford: Oxford University Press.Google Scholar
  54. Grodzinsky, Y., & Santi, A. (2008). The battle for Broca’s region. Trends in Cognitive Science, 12(12), 474–480.CrossRefGoogle Scholar
  55. Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9(9), 416–423.Google Scholar
  56. Hagoort, P. (2013). MUC (memory, unification, control) and beyond. Frontiers in Psychology, 4, 416. doi:10.3389/fpsyg.2013.00416
  57. Hamanaka, M., Hirata, K., & Tojo, S. (2006). Implementing “a generative theory of tonal music”. Journal of New Music Research, 35(4), 249–277.CrossRefGoogle Scholar
  58. Hamilton, A. C., & Martin, R. C. (2005). Dissociations among tasks involving inhibition: A single case study. Cognitive, Affective and Behavioral Neuroscience, 5(1), 1–13.PubMedCrossRefGoogle Scholar
  59. Hannon, E. E., & Trainor, L. J. (2007). Music acquisition: Effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11(11), 466–472.PubMedCrossRefGoogle Scholar
  60. Harding, E., Sammler, D., D’Ausilio, A., Friederici, A., Fadiga, L., & Koelsch, S. (2011). Explicit action perception shares resources with music syntax: A controlled behavioral study. Poster presented at The Neurosciences and Music IV: Learning and Memory, Edinburgh, UK.Google Scholar
  61. Hesselink, N. D. (2013). Radiohead’s “pyramid song”: Ambiguity, rhythm, and participation. Music Theory Online, 19, 1–25.Google Scholar
  62. Hoch, L., Poulin-Charronnat, B., & Tillmann, B. (2011). The influence of task-irrelevant music on language processing: Syntactic and semantic structures. Frontiers in Psychology, 2, 1–10. doi:10.3389/fpsyg.2011.00112 CrossRefGoogle Scholar
  63. Hoch, L., & Tillmann, B. (2012). Shared structural and temporal integration resources for music and arithmetic processing. Acta Psychologica, 140(3), 230–235.PubMedCrossRefGoogle Scholar
  64. Hussey, E. K., & Novick, J. M. (2012). The benefits of executive control training and the implications for language processing. Frontiers in Psychology, 3, 1–14. doi:10.3389/fpsyg.2012.00158
  65. Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387(2), 167–178.PubMedCrossRefGoogle Scholar
  66. Iverson, P. (1995). Auditory stream segregation by musical timbre: Effects of static and dynamic acoustic attributes. Journal of Experimental Psychology, 21(4), 751–763.PubMedGoogle Scholar
  67. Jackendoff, R. S. (1991). Musical parsing and musical affect. Music Perception, 9(2), 199–230.CrossRefGoogle Scholar
  68. Jackendoff, R. S. (2009). Parallels and nonparallels between language and music. Music Perception, 26(3), 195–204. doi:10.1525/MP.2009.26.3.195 CrossRefGoogle Scholar
  69. Janata, P., Tillmann, B., & Bharucha, J. J. (2002). Listening to polyphonic music recruits domain-general attention and working memory circuits. Cognitive, Affective and Behavioral Neuroscience, 2(2), 121–140.PubMedCrossRefGoogle Scholar
  70. January, D., Trueswell, J. C., & Thompson-Schill, S. L. (2009). Co-localization of stroop and syntactic ambiguity resolution in Broca’s area: Implications for the neural basis of sentence processing. Journal of Cognitive Neuroscience, 21(12), 2434–2444.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Jentschke, S., Koelsch, S., Sallat, S., & Friederici, A. D. (2008). Children with specific language impairment also show impairment of music-syntactic processing. Journal of Cognitive Neuroscience, 20(11), 1940–1951.PubMedCrossRefGoogle Scholar
  72. Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inihibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 8410–8413.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–354.PubMedCrossRefGoogle Scholar
  74. Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122–149.PubMedCrossRefGoogle Scholar
  75. Katz, J., & Pesetsky, D. (2011). The Identity Thesis for Language and Music. Retrieved from http://ling.auf.net/lingbuzz/000959
  76. Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.PubMedCrossRefGoogle Scholar
  77. Khanna, M. M., & Boland, J. E. (2010). Children’s use of language context in lexical ambiguity resolution. The Quarterly Journal of Experimental Psychology, 63(1), 160–193.PubMedCrossRefGoogle Scholar
  78. Klepousniotou, E., Gracco, V. L., & Pike, G. B. (2013). Pathways to lexical ambiguity: fMRI evidence for bilateral fronto-parietal involvement in language processing. Brain and Language, 131, 56–64.PubMedCrossRefGoogle Scholar
  79. Koechlin, E., & Jubault, T. (2006). Broca’s area and the hierarchical organization of human behavior. Neuron, 50(6), 963–974.PubMedCrossRefGoogle Scholar
  80. Koechlin, E., & Summerfield, C. (2011). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–236.CrossRefGoogle Scholar
  81. Koelsch, S. (2011). Toward a neural basis of music perception—A review and update model. Frontiers in Psychology, 2, 1–20.Google Scholar
  82. Koelsch, S. (2012). Response to target article “Language, music, and the brain: A resource-sharing framework”. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 224–234). Oxford: Oxford University Press.Google Scholar
  83. Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005a). Adults and children processing music: An fMRI study. NeuroImage, 25(4), 1068–1076.PubMedCrossRefGoogle Scholar
  84. Koelsch, S., Gunter, T. C., von Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks: A cortical “language-network” serves the processing of music. NeuroImage, 17(2), 956–966.PubMedCrossRefGoogle Scholar
  85. Koelsch, S., Gunter, T. C., Wittfoth, M., & Sammler, D. (2005b). Interaction between syntax processing in language and in music: An ERP Study. Journal of Cognitive Neuroscience, 17(10), 1565–1577.PubMedCrossRefGoogle Scholar
  86. Koelsch, S., Schulze, K., Sammler, D., Fritz, T., Muller, K., & Gruber, O. (2009). Functional architecture of verbal and tonal working memory: An FMRI study. Human Brain Mapping, 30(3), 859–873.PubMedCrossRefGoogle Scholar
  87. Kouneiher, F., Charron, S., & Koechlin, E. (2009). Motivation and cognitive control in the human prefrontal cortex. Nature Neuroscience, 12(7), 939–945.PubMedCrossRefGoogle Scholar
  88. Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831–843.PubMedCrossRefGoogle Scholar
  89. Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1–37.CrossRefGoogle Scholar
  90. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339–354.CrossRefGoogle Scholar
  91. Lerdahl, F. A. (2001). Tonal pitch space. New York: Oxford University Press.Google Scholar
  92. Lerdahl, F. A., & Jackendoff, R. S. (1983). A generative theory of tonal music. Cambridge: MIT Press.Google Scholar
  93. Levitin, D. J., & Menon, V. (2003). Musical structure is processed in “language” areas of the brain: A possible role for Brodmann Area 47 in temporal coherence. NeuroImage, 20, 2142–2152.PubMedCrossRefGoogle Scholar
  94. Lewin, D. (1986). Music theory, phenomenology, and modes of perception. Music Perception, 3(4), 327–392.CrossRefGoogle Scholar
  95. Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10(10), 44–54.CrossRefGoogle Scholar
  96. London, J. (2012a). Hearing in time: Psychological aspects of musical meter. New York: Oxford University Press.CrossRefGoogle Scholar
  97. London, J. (2012b). Schemas, not syntax: A reply to Patel. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 242–247). Oxford: Oxford University Press.Google Scholar
  98. Longuet-Higgins, H. C. (1976). The perception of melodies. Nature, 263, 646–653.CrossRefGoogle Scholar
  99. Loui, P. (2012). Learning and liking of melody and harmony: Further studies in artificial grammar. Topics in Cognitive Science, 4, 1–14.CrossRefGoogle Scholar
  100. Loui, P., & Wessel, D. L. (2007). Harmonic expectation and affect in Western music: Effects of attention and training. Perception & Psychophysics, 69(7), 1084–1092.CrossRefGoogle Scholar
  101. Loui, P., Wessel, D. L., & Hudson Kam, C. L. (2010). Humans rapidly learn grammatical structure in a new musical scale. Music Perception, 27(5), 377–388.PubMedCentralPubMedCrossRefGoogle Scholar
  102. Loui, P., Wu, E. H., Wessel, D. L., & Knight, R. T. (2009). A generalized mechanism for perception of pitch patterns. Journal of Neuroscience, 29(2), 454–459.PubMedCentralPubMedCrossRefGoogle Scholar
  103. MacDonald, M. C., Pearlmutter, N. J., & Seidenberg, M. S. (1994). Lexical nature of syntactic ambiguity resolution. Psychological Review, 101(4), 676–703.PubMedCrossRefGoogle Scholar
  104. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163–203.PubMedCrossRefGoogle Scholar
  105. Maruyama, M., Pallier, C., Jobert, A., Sigman, M., & Dehaene, S. (2012). The cortical representation of simple mathematical expressions. NeuroImage, 61(4), 1444–1460.PubMedCrossRefGoogle Scholar
  106. Masataka, N., & Perlovsky, L. (2013). Cognitive interference can be mitigated by consonant music and facilitated by dissonant music. Scientific Reports, 3, 1–6.CrossRefGoogle Scholar
  107. McClelland, J. L., St. John, M., & Taraban, R. (1989). Sentence comprehension: A parallel distributed processing approach. Language and Cognitive Processes, 4, 287–335.CrossRefGoogle Scholar
  108. McDonald, C. (2000). Exploring modal subversions in alternative music. Popular Music, 19(3), 355–363.CrossRefGoogle Scholar
  109. McMullen, E., & Saffran, J. R. (2004). Music and language: A developmental comparison. Music Perception, 21(3), 289–311.CrossRefGoogle Scholar
  110. Micheyl, C., Hanson, C., Demany, L., Shamma, S., & Oxenham, A. J. (2013). Auditory stream segregation for alternating and synchronous tones. Journal of Experimental Psychology: Human Perception and Performance, 39(6), 1568–1580. doi:10.1037/a0032241 PubMedCentralPubMedGoogle Scholar
  111. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.PubMedCrossRefGoogle Scholar
  112. Minati, L., Rosazza, C., D’incerti, L., Pietrocini, E., Valentini, L., Scaioli, V., … Bruzzone, M. G. (2008). FMRI/ERP of musical syntax: comparison of melodies and unstructured note sequences. NeuroReport, 19(14), 1381–1385.Google Scholar
  113. Moore, B. C., & Gockel, H. E. (2012). Properties of auditory stream formation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 367, 919–931.PubMedCentralPubMedCrossRefGoogle Scholar
  114. Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22, 1425–1433. doi:10.1177/0956797611416999 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Norton, A., Winner, E., Cronin, K., Overy, K., Lee, D. J., & Schlaug, G. (2005). Are there pre-existing neural, cognitive, or motoric markers for musical ability? Brain and Cognition, 59(2), 124–134.PubMedCrossRefGoogle Scholar
  116. Novick, J. M., Kan, I. P., Trueswell, J. C., & Thompson-Schill, S. L. (2009). A case for conflict across multiple domains: Memory and language impairments following damage to ventrolateral prefrontal cortex. Cognitive Neuropsychology, 26(6), 527–567.PubMedCentralPubMedCrossRefGoogle Scholar
  117. Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2005). Cognitive control and parsing: Reexamining the role of Broca’s area in sentence comprehension. Cognitive, Affective and Behavioral Neuroscience, 5(3), 263–281.PubMedCrossRefGoogle Scholar
  118. Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2010). Broca’s area and language processing: Evidence for the cognitive control connection. Language and Linguistics Compass, 4(10), 906–924.CrossRefGoogle Scholar
  119. Oechslin, M. S., Van De Ville, D., Lazeyras, F., Hauert, C.-A., & James, C. E. (2013). Degree of musical expertise modulates higher order brain functioning. Cerebral Cortex, 23, 2213–2224.PubMedCrossRefGoogle Scholar
  120. Pallesen, K. J., Brattico, E., Bailey, C. J., Korvenoja, A., Koivisto, J., Gjedde, A., & Carlson, S. (2010). Cognitive control in auditory working memory is enhanced in musicians. PLoS ONE, 5, 1–12.CrossRefGoogle Scholar
  121. Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6, 674–681.PubMedCrossRefGoogle Scholar
  122. Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.Google Scholar
  123. Patel, A. D. (2012). Language, music, and the brain: A resource-sharing framework. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and music as cognitive systems (pp. 204–223). New York: Oxford University Press.Google Scholar
  124. Patel, A. D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P. J. (1998). Processing syntactic relations in language and music: An event-related potential study. Journal of Cognitive Neuroscience, 10(6), 717–733.PubMedCrossRefGoogle Scholar
  125. Patel, A. D., Iversen, J. R., Wassenaar, M., & Hagoort, P. (2008). Musical syntactic processing in agrammatic Broca’s aphasia. Aphasiology, 22, 776–789. doi:10.1080/02687030701803804 CrossRefGoogle Scholar
  126. Peretz, I. (1993). Auditory atonalia for melodies. Cognitive Neuropsychology, 10(1), 21–56.CrossRefGoogle Scholar
  127. Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100, 1–32.PubMedCrossRefGoogle Scholar
  128. Peretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688–691.PubMedCrossRefGoogle Scholar
  129. Perruchet, P., & Poulin-Charronnat, B. (2013). Challenging prior evidence for a shared syntactic processor for language and music. Psychonomic Bulletin and Review, 20(2), 310–317.PubMedCrossRefGoogle Scholar
  130. Pickering, M. J., & van Gompel, R. P. G. (2006). Syntactic parsing. In M. J. Traxler & M. A. Gernsbacher (Eds.), Handbook of psycholinguistics (2nd ed., pp. 455–503). Amsterdam: Academic Press.CrossRefGoogle Scholar
  131. Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10, 15–35.PubMedCrossRefGoogle Scholar
  132. Poulin-Charronnat, B., Bigand, E., Madurell, F., & Peereman, R. (2005). Musical structure modulates semantic priming in vocal music. Cognition, 94(3), B67–B78.PubMedCrossRefGoogle Scholar
  133. Repp, B. H. (2007). Hearing a melody in different ways: Multistability of metrical interpretation, reflected in rate limits of sensorimotor synchronization. Cognition, 102, 434–454.PubMedCrossRefGoogle Scholar
  134. Ripani, R. J. (2006). The New Blue Music: Changes in Rhythm & Blues, 1950-1999. Jackson: University Press of Mississippi..Google Scholar
  135. Rodd, J. M., Johnsrude, I. S., & Davis, M. H. (2010). The role of domain-general frontal systems in language comprehension: Evidence from dual-task interference and semantic ambiguity. Brain and Language, 115(3), 182–188.PubMedCrossRefGoogle Scholar
  136. Rogalsky, C., & Hickok, G. (2011). The role of Broca’s area in sentence comprehension. Journal of Cognitive Neuroscience, 23(7), 1664–1680.PubMedCrossRefGoogle Scholar
  137. Rogalsky, C., Rong, F., Saberi, K., & Hickok, G. (2011). Functional anatomy of language and music perception: Temporal and structural factors investigated using functional Magnetic Resonance Imaging. The Journal of Neuroscience, 31(10), 3843–3852. doi:10.1523/JNEUROSCI.4515-10.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  138. Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 35–53.CrossRefGoogle Scholar
  139. Rohrmeier, M., & Koelsch, S. (2012). Predictive information processing in music cognition. A critical review. International Journal of Psychophysiology, 83, 164–175.PubMedCrossRefGoogle Scholar
  140. Rohrmeier, M., & Rebuschat, P. (2012). Implicit learning and acquisition of music. Topics in Cognitive Science, 4, 525–553.PubMedCrossRefGoogle Scholar
  141. Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 1926–1928.PubMedCrossRefGoogle Scholar
  142. Saffran, J. R., Senghas, A., & Trueswell, J. C. (2001). The acquisition of language by children. Proceedings of the National Academy of Sciences, 98(23), 12874–12875.CrossRefGoogle Scholar
  143. Sammler, D., Koelsch, S., & Friederici, A. D. (2011). Are left fronto-temporal brain areas a prerequisite for normal music-syntactic processing? Cortex, 47(6), 659–673.PubMedCrossRefGoogle Scholar
  144. Sammler, D., Novembre, G., Koelsch, S., & Keller, P. E. (2013). Syntax in a pianist’s hand: ERP signatures of “embodied” syntax processing in music. Cortex, 49(5), 1325–1339.PubMedCrossRefGoogle Scholar
  145. Schellenberg, E. G. (2011). Examining the association between music lessons and intelligence. British Journal of Psychology, 102, 283–302.PubMedCrossRefGoogle Scholar
  146. Schellenberg, E. G., & Weiss, M. W. (2012). Music and cognitive abilities. In D. Deutsch (Ed.), The psychology of music (3rd ed., pp. 499–550). Amsterdam: Elsevier.Google Scholar
  147. Schenker, H. (1935/1979). Free composition. New York: Longman.Google Scholar
  148. Scherzinger, M. (2010). Temporal geometries of an African music: A preliminary sketch. Music Theory Online, 16(4).Google Scholar
  149. Schnur, T. T., Schwartz, M. F., Kimberg, D. Y., Hirshorn, E., Coslett, H. B., & Thompson-Schill, S. L. (2009). Localizing interference during naming: Convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. Proceedings of the National Academy of Sciences, 106(1), 322–327.CrossRefGoogle Scholar
  150. Schulze, K., Zysset, S., Mueller, K., Friederici, A. D., & Koelsch, S. (2011). Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Human Brain Mapping, 32(5), 771–783.PubMedCrossRefGoogle Scholar
  151. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356. doi:10.1523/JNEUROSCI.5587-06.2007
  152. Seger, C. A., Spiering, B. J., Sares, A. G., Quraini, S. I., Alpeter, C., David, J., & Thaut, M. H. (2013). Corticostriatal contributions to musical expectancy perception. Journal of Cognitive Neuroscience, 25(7), 1062–1077.PubMedCrossRefGoogle Scholar
  153. Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79, 217–240. doi:10.1016/j.neuron.2013.07.007 PubMedCentralPubMedCrossRefGoogle Scholar
  154. Slevc, L. R. (2012). Language and music: Sound, structure, and meaning. Wiley Interdisciplinary Reviews: Cognitive Science, 3(4), 483–492.CrossRefGoogle Scholar
  155. Slevc, L. R., Reitman, J. G., & Okada, B. M. (2013). Syntax in music and language: The role of cognitive control. Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 3414–3419). Berlin, Germany: Cognitive Science Society.Google Scholar
  156. Slevc, L. R., Rosenberg, J. C., & Patel, A. D. (2009). Making psycholinguistics musical: Self-paced reading time evidence for shared processing of linguistic and musical syntax. Psychonomic Bulletin and Review, 16(2), 374–381. doi:10.3758/16.2.374 PubMedCrossRefGoogle Scholar
  157. Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., & Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. NeuroImage, 17(3), 1613–1622.PubMedCrossRefGoogle Scholar
  158. Smith, P. H. (2006). You reap what you sow: Some instances of rhythmic and harmonic ambiguity in Brahms. Music Theory Spectrum, 28(1), 57–97.CrossRefGoogle Scholar
  159. Steinbeis, N., & Koelsch, S. (2008). Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns. Cerebral Cortex, 18(5), 1169–1178.PubMedCrossRefGoogle Scholar
  160. Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57(4), 421–457.PubMedGoogle Scholar
  161. Stevens, C. J. (2012). Music perception and cognition: A review of recent cross-cultural research. Topics in Cognitive Science, 4, 653–667.PubMedCrossRefGoogle Scholar
  162. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
  163. Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632–1634.PubMedCrossRefGoogle Scholar
  164. Temperley, D. (2001). The cognition of basic musical structures. Cambridge: MIT Press.Google Scholar
  165. Thompson, W. (1983). Functional ambiguity in musical structures. Music Perception, 1(1), 3–27.CrossRefGoogle Scholar
  166. Thompson-Schill, S. L., Jonides, J., Marshuetz, C., Smith, E. E., D’Esposito, M., Kan, I. P., … Swick, D. (2002). Effects of frontal lobe damage on interference effects in working memory. Cognitive, Affective, and Behavioral Neuroscience, 2(2), 109–120.Google Scholar
  167. Thothathiri, M., Kim, A., Trueswell, J. C., & Thompson-Schill, S. L. (2012). Parametric effects of syntactic-semantic conflict in Broca’s area during sentence processing. Brain and Language, 120(3), 259–264.PubMedCentralPubMedCrossRefGoogle Scholar
  168. Tillmann, B. (2012). Music and language perception: Expectations, structural integration, and cognitive sequencing. Topics in Cognitive Science, 4, 568–584. doi:10.1111/j.1756-8765.2012.01209.x PubMedCrossRefGoogle Scholar
  169. Tillmann, B., Bigand, E., & Madurell, F. (1998). Local versus global processing of harmonic cadences in the solution of musical puzzles. Psychological Research, 61, 157–174.CrossRefGoogle Scholar
  170. Tillmann, B., Janata, P., & Bharucha, J. J. (2003). Activation of the inferior frontal cortex in musical priming. Cognitive Brain Research, 16, 145–161.PubMedCrossRefGoogle Scholar
  171. Tillmann, B., Koelsch, S., Escoffier, N., Bigand, E., Lalitte, P., Friederici, A. D., & von Cramon, D. Y. (2006). Cognitive priming in sung and instrumental music: Activation of inferior frontal cortex. NeuroImage, 31(4), 1771–1782.PubMedCrossRefGoogle Scholar
  172. Travis, F., Harung, H. S., & Lagrosen, Y. (2011). Moral development, executive functioning, peak experiences and brain patterns in professional and amateur classical musicians: Interpreted in light of a unified theory of performance. Consciousness and Cognition, 20(4), 1256–1264.PubMedCrossRefGoogle Scholar
  173. Vazan, P., & Schober, M. F. (2004). Detecting and resolving metrical ambiguity in a rock song upon multiple rehearings. Proceedings of the 8th International Conference on Music Perception and Cognition (pp. 426–432). Adelaide, Australia: Causal Productions.Google Scholar
  174. Vuong, L. C., & Martin, R. C. (2011). LIFG-based attentional control and the resolution of lexical ambiguities in sentence context. Brain and Language, 116(1), 22–32.PubMedCentralPubMedCrossRefGoogle Scholar
  175. Vuust, P., Roepstorff, A., Wallentin, M., Mouridsen, K., & Østergaard, L. (2006). It don’t mean a thing… Keeping the rhythm during polyrhythmic tension, activates language areas (BA47). NeuroImage, 31(2), 832–841.PubMedCrossRefGoogle Scholar
  176. Vuust, P., Wallentin, M., Mouridsen, K., Østergaard, L., & Roepstorff, A. (2011). Tapping polyrhythms in music activates language areas. Neuroscience Letters, 494(3), 211–216.PubMedCrossRefGoogle Scholar
  177. Williamson, V. J., Baddeley, A., & Hitch, G. J. (2010). Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity. Memory and Cognition, 38(2), 163–175.PubMedCrossRefGoogle Scholar
  178. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665–670. doi:10.1038/nmeth.1635 PubMedCentralPubMedCrossRefGoogle Scholar
  179. Ye, Z., & Zhou, X. (2008). Involvement of cognitive control in sentence comprehension: Evidence from ERPs. Brain Research, 1203, 103–115.PubMedCrossRefGoogle Scholar
  180. Ye, Z., & Zhou, X. (2009). Executive control in language processing. Neuroscience and Biobehavioral Reviews, 33(8), 1168–1177.PubMedCrossRefGoogle Scholar
  181. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931–959.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of MarylandCollege ParkUSA

Personalised recommendations