Advertisement

Psychonomic Bulletin & Review

, Volume 22, Issue 3, pp 687–693 | Cite as

The perception of Glass patterns by starlings (Sturnus vulgaris)

  • Muhammad A. J. Qadri
  • Robert G. Cook
Brief Report

Abstract

Glass patterns are structured dot stimuli used to investigate the visual perception of global form. Studies have demonstrated that humans and pigeons differ in their processing of circular versus linearly organized Glass patterns. To test whether this comparative difference is characteristic of birds as a phylogenetic class, we investigated for the first time how a passerine (starlings, Sturnus vulgaris) discriminated multiple Glass patterns from random-dot stimuli in a simultaneous discrimination. By examining acquisition, steady-state performance, and the effects of diminishing global coherence, it was found that the perception of Glass patterns by 5 starlings differed from human perception and corresponded to that established with pigeons. This suggests an important difference in how birds and primates are specialized in their processing of circular visual patterns, perhaps related to face perception, or in how these highly visual animals direct attention to the global and local components of spatially separated form stimuli.

Keywords

Comparative cognition Visual perception Glass pattern Starling Sturnus vulgaris 

Supplementary material

13423_2014_709_MOESM1_ESM.doc (3.9 mb)
Supplementary Figure 1 Comprehensive sampling of displays used during training the starlings. The left labels indicate local group type, the top labels indicate global pattern, and the right labels indicate visual angle of the total pattern. (DOC 4028 kb)

References

  1. Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., & Lunau, K. (1997). Ultraviolet plumage colors predict mate preferences in starlings. Proceedings of the National Academy of Science, 94(16), 8618–8621.CrossRefGoogle Scholar
  2. Bock, W. J., & Farrand, J., Jr. (1980). The number of species and genera of recent birds: A contribution to comparative systematics. American Museum Novitates, 2703, 1–29.Google Scholar
  3. Brown, J. W., Rest, J. S., Garcia-Moreno, J., Sorenson, M. D., & Mindell, D. P. (2008). Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology, 6, 6. doi: 10.1186/1741-7007-6-6 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Cavoto, K. K., & Cook, R. G. (2001). Cognitive precedence for local information in hierarchical stimulus processing by pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 27(1), 3–16. doi: 10.1037/0097-7403.27.1.3 PubMedGoogle Scholar
  5. Chojnowski, J. L., Kimball, R. T., & Braun, E. L. (2008). Introns outperform exons in analyses of basal avian phylogeny using clathrin heavy chain genes. Gene, 410(1), 89–96. doi: 10.1016/j.gene.2007.11.016 CrossRefPubMedGoogle Scholar
  6. Cook, R. G. (2001). Avian visual cognition retrieved from www.pigeon.psy.tufts.edu/avc
  7. Cook, R. G., Qadri, M. A. J., Kieres, A., & Commons-Miller, N. (2012). Shape from shading in pigeons. Cognition, 124(3), 284–303. doi: 10.1016/j.cognition.2012.05.007 CrossRefPubMedGoogle Scholar
  8. Dolan, T., & Fernández-Juricic, E. (2010). Retinal ganglion cell topography of five species of ground-foraging birds. Brain, Behavior and Evolution, 75(2), 111–121.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Emery, N. J. (2006). Cognitive ornithology: The evolution of avian intelligence. Philosophical Transactions of the Royal Society of London, 361, 23–43. doi: 10.1098/rstb.2005.1736 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Endler, J. A., Westcott, D. A., Madden, J. R., & Robson, T. (2005). Animal visual systems and the evolution of color patterns: Sensory processing illuminates signal evolution. Evolution, 59(8), 1795–1818.CrossRefPubMedGoogle Scholar
  11. Feare, C. (1984). The starling. Oxford: Oxford University Press.Google Scholar
  12. Forkman, B. (1998). Hens use occlusion to judge depth in a two-dimensional picture. Perception, 27(7), 861–867. doi: 10.1068/P270861 CrossRefPubMedGoogle Scholar
  13. Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360(6402), 343–346. doi: 10.1038/360343a0 CrossRefPubMedGoogle Scholar
  14. Gallant, J. L., Braun, J., & Van Essen, D. C. (1993). Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science, 259(5091), 100–103.CrossRefPubMedGoogle Scholar
  15. Ghim, M. M., & Hodos, W. (2006). Spatial contrast sensitivity of birds. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 192(5), 523–534.CrossRefPubMedGoogle Scholar
  16. Glass, L. (1969). Moire effect from random dots. Nature, 223(5206), 578–580.CrossRefPubMedGoogle Scholar
  17. Gutiérrez-Ibáñez, C., Iwaniuk, A. N., Moore, B. A., Fernández-Juricic, E., Corfield, J. R., Krilow, J. M., & Wylie, D. R. (2014). Mosaic and concerted evolution in the visual system of birds. PLoS ONE, 9(3), e90102.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Hart, N. S. (2001). Variations in cone photoreceptor abundance and the visual ecology of birds. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 187(9), 685–697.CrossRefGoogle Scholar
  19. Hart, N. S., Partridge, J. C., & Cuthill, I. C. (2000). Retinal asymmetry in birds. Current Biology, 10(2), 115–117.CrossRefPubMedGoogle Scholar
  20. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106–154.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Husband, S., & Shimizu, T. (2001). Evolution of the avian visual system. In R. G. Cook (Ed.), Avian visual cognition. [On-line]. Available: www.pigeon.psy.tufts.edu/avc/husband/
  22. Iwaniuk, A. N., & Hurd, P. L. (2005). The evolution of cerebrotypes in birds. Brain, Behavior and Evolution, 65(4), 215–230. doi: 10.1159/000084313 CrossRefPubMedGoogle Scholar
  23. Jarvis, E., Güntürkün, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., & Shimizu, T. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 6(2), 151–159. doi: 10.1038/nrn1606 CrossRefPubMedGoogle Scholar
  24. Jassik-Gerschenfeld, D., & Guichard, J. (1972). Visual receptive fields of single cells in the pigeon's optic tectum. Brain Research, 40, 303–317.CrossRefPubMedGoogle Scholar
  25. Jones, M. P., Pierce, K. E., Jr., & Ward, D. (2007). Avian vision: A review of form and function with special consideration to birds of prey. Journal of Exotic Pet Medicine, 16(2), 69–87. doi: 10.1053/j.jepm.2007.03.012 CrossRefGoogle Scholar
  26. Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society, B: Biological Sciences, 361(1476), 2109–2128. doi: 10.1098/rstb.2006.1934 CrossRefPubMedCentralGoogle Scholar
  27. Kelly, D. M., Bischof, W. F., Wong-Wylie, D. R., & Spetch, M. L. (2001). Detection of glass patterns by pigeons and humans: Implications for differences in higher-level processing. Psychological Science, 12(4), 338–342.CrossRefPubMedGoogle Scholar
  28. Martin, G. (1986). The eye of a passeriform bird, the European starling (Sturnus vulgaris): Eye movement amplitude, visual fields and schematic optics. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 159(4), 545–557.CrossRefGoogle Scholar
  29. Martin, G. (2007). Visual fields and their functions in birds. Journal of Ornithology, 148(S2), 547–562. doi: 10.1007/s10336-007-0213-6 CrossRefGoogle Scholar
  30. Qadri, M. A. J., Romero, L. M., & Cook, R. G. (in press). Shape-from-shading in European starlings (Sturnus vulgaris). Journal of Comparative Psychology Google Scholar
  31. Swaddle, J. P., Che, J. P. K., & Clelland, R. E. (2004). Symmetry preference as a cognitive by-product in starlings. Behaviour, 141(4), 469–478. doi: 10.1163/156853904323066748 CrossRefGoogle Scholar
  32. Swaddle, J. P., & Pruett-Jones, S. (2001). Starlings can categorize symmetry differences in dot displays. American Naturalist, 158(3), 300–307. doi: 10.1086/321323 CrossRefPubMedGoogle Scholar
  33. Swaddle, J. P., & Witter, M. S. (1995). Chest plumage, dominance and fluctuating asymmetry in female starlings. Proceedings of the Royal Society of London. Series B: Biological Sciences, 260(1358), 219–223. doi: 10.1098/rspb.1995.0083 CrossRefGoogle Scholar
  34. Templeton, J. J., & Gonzalez, D. P. (2004). Reverse lateralization of visual discriminative abilities in the European starling. Animal Behaviour, 67, 783–788. doi: 10.1016/j.anbehav.2003.04.011 CrossRefGoogle Scholar
  35. Vallortigara, G. (2006). The cognitive chicken: Visual and spatial cognition in a nonmammalian brain. In E. A. Wasserman & T. R. Zentall (Eds.), Comparative cognition: Experimental explorations of animal intelligence (pp. 71–86). New York, NY: Oxford University Press.Google Scholar
  36. Wilkinson, F., James, T. W., Wilson, H. R., Gati, J. S., Menon, R. S., & Goodale, M. A. (2000). An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. Current Biology, 10(22), 1455–1458. doi: 10.1016/S0960-9822(00)00800-9 CrossRefPubMedGoogle Scholar
  37. Wilson, H. R., & Wilkinson, F. (1998). Detection of global structure in Glass patterns: Implications for form vision. Vision Research, 38(19), 2933–2947.CrossRefPubMedGoogle Scholar
  38. Wilson, H. R., Wilkinson, F., & Asaad, W. (1997). Concentric orientation summation in human form vision. Vision Research, 37(17), 2325–2330. doi: 10.1016/S0042-6989(97)00104-1 CrossRefPubMedGoogle Scholar
  39. Zeigler, H. P., & Bischof, W. F. (1993). Vision, brain, and behavior in birds. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of PsychologyTufts UniversityMedfordUSA

Personalised recommendations