Advertisement

Psychonomic Bulletin & Review

, Volume 22, Issue 1, pp 78–87 | Cite as

The application of biological motion research: biometrics, sport, and the military

  • Kylie SteelEmail author
  • Eathan Ellem
  • David Baxter
Theoretical Review

Abstract

The body of research that examines the perception of biological motion is extensive and explores the factors that are perceived from biological motion and how this information is processed. This research demonstrates that individuals are able to use relative (temporal and spatial) information from a person’s movement to recognize factors, including gender, age, deception, emotion, intention, and action. The research also demonstrates that movement presents idiosyncratic properties that allow individual discrimination, thus providing the basis for significant exploration in the domain of biometrics and social signal processing. Medical forensics, safety garments, and victim selection domains also have provided a history of research on the perception of biological motion applications; however, a number of additional domains present opportunities for application that have not been explored in depth. Therefore, the purpose of this paper is to present an overview of the current applications of biological motion-based research and to propose a number of areas where biological motion research, specific to recognition, could be applied in the future.

Keywords

Biological motion Gait recognition Perception Perception of biological motion Training Visual cues 

References

  1. Abernethy, B. (1989). Expert-novice differences in perception: How expert does the expert have to be? Journal of Sports Sciences, 14(1), 27–30. Retrieved from http://psycnet.Google Scholar
  2. Alpert, G. P., Dunham, R. G. (2004). Understanding police use of force: Officers, suspects, and reciprocity. Cambridge, UK: Cambridge University Press.Google Scholar
  3. Archer, C. I. (2002). World history of warfare. Lincoln, NE: University of Nebraska Press.Google Scholar
  4. Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33(6), 717–746. doi: 10.1068/p5096 PubMedCrossRefGoogle Scholar
  5. Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorder. Neuropsychologia, 47(13), 3023–3029. doi: 10.1016/j.neuropsychologia.2009.05. 019 PubMedCrossRefGoogle Scholar
  6. Barclay, C. D., Cutting, J. E., & Kozlowski, L. T. (1978). Temporal and spatial factors in gait perception that influence gender recognition. Perception and Psychophysics, 23(2), 145–152. Retrieved from http://link.springer.com/article/10.3758/BF032082 PubMedCrossRefGoogle Scholar
  7. Ben-Abdelkader, C., Cutler, R., & Davis, L. (2002, May, 20-21). Motion-based recognition of people in EigenGait space. Paper presented at the 5th IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC.Google Scholar
  8. Boyd, J. E., & Little, J. J. (2003). Biometric gait recognition. In M. Tistarelli, J. Bigun, & E. Grosso (Eds.), Advanced studies in biometrics: Summer school on biometrics, Alghero, Italy, revised selected lectures and papers (pp. 19–42). Halmstad: Springer.Google Scholar
  9. Boulgouris, N., Hatzinakos, D., & Plataniotis, K. (2005). Gait recognition: A challenging signal processing technology for biometric identification. IEEE Signal Processing Magazine, 78–90.Google Scholar
  10. Burke, S., Priest, H. A., Salas, E., Sims, D., Mayer, K. (2008). Stress and teams: How stress affects decision making at the team level. In P. A. Hancock., & J. L . Szalma (Eds.), Performance under stress (181–208). Hampshire, ENG: Ashgate Publishing Limited.Google Scholar
  11. Casale, P., Pujol, O., & Radeva, P. (2012). Personalization and user verification in wearable systems using biometric walking patterns. Personal and Ubiquitous Computing, 16(5), 563–580. doi: 10.1007/s00779-011-0415-z CrossRefGoogle Scholar
  12. Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., & Rose, D. (2005). The perception of emotion from body movement in point-light displays in interpersonal dialogue. Perception, 34(10), 1171–1180. doi: 10.1068/p5203 PubMedCrossRefGoogle Scholar
  13. Cunado, D., Nixon, M. S., & Carter, J. N. (2003). Automatic extraction and description of human gait models for recognition purposes. Computer Vision and Image Understanding, 90(1), 1–41. doi: 10.1016/S1077-3142(03)00008-0 CrossRefGoogle Scholar
  14. Cutting, J. E., & Kozlowski, L. T. (1977). Recognising friends by their walk; Gait perception without familiarity cues. Bulletin of the Psychonomic Society, 9(5), 353–356. Retrieved from http://link.springer.com/article/10.3758/BF03337021 CrossRefGoogle Scholar
  15. Cutting, J. E., Proffitt, D. R., & Kozlowski, L. T. (1978). A biomechanical invariant for gait perception. Journal of Experimental Psychology: Human Perception and Performance, 4(3), 357–372. doi: 10.1037/0096-1523.4.3.357 PubMedGoogle Scholar
  16. Davis, J. W., & Taylor, S. R. (2002, 11-15, August). Analysis and recognition of walking movements. Paper presented at the International Conference on Pattern Recognition Quebec City, Canada.Google Scholar
  17. Dittrich, W. H. (1993). Action categories and the perception of biological motion. Perception, 22(1), 15–22. doi: 10.1068/p220015 PubMedCrossRefGoogle Scholar
  18. Edwards, B. (2007). C. S. Lewis: Life, works and legacy, Volume 1. London: Greenwood Publishing Group.Google Scholar
  19. Ellem E. (2013). Can video training improve the accuracy and speed of Teammate Identification (TM-ID) in Sports People? (unpublished honours thesis). University of Western Sydney, Sydney. Australia.Google Scholar
  20. Endsley, M. (2013). Situation awareness. In J. D. Lee., & A. Kirlik (Eds.), The Oxford Handbook of Cognitive Engineering (pp. 88–108). New York, USA: Oxford University Press.Google Scholar
  21. Fodor, J. A. (1983). The modularity of mind. MA: MIT Press.Google Scholar
  22. Fodor, J. A. (1985). Precis of the modularity of mind. Behavioural Brain Science., 8, 1–42.CrossRefGoogle Scholar
  23. Foster, J. P., Nixon, M. S., & Prügel-Bennett. (2003). Automatic gait recognition using area based metrics. Pattern Recognition Letters, 24(14), 2489–2497. doi: 10.1016/S0167-8655(03)00094-1 CrossRefGoogle Scholar
  24. Fox, R., & McDaniel, C. (1982). The perception of biological motion by human infants. Science, 218, 486–487.Google Scholar
  25. Garrison, W. B. (1999). Friendly fire in the civil war: More than 100 true stories of comrade killing. Nashville, TN: Rutledge Hill press.Google Scholar
  26. Gibson, J. J. (1986). The ecological approach to visual perception. London: LEA.Google Scholar
  27. Grayson, B., & Stein, M. I. (1981). Attracting assault: Victims nonverbal cues. Journal of Communication, 31, 68–75.Google Scholar
  28. Green, M. (2005). Is it a gun or a wallet? Perceptual factors in police shootings of unarmed suspects. Police Marksman, July/August, 52–54.Google Scholar
  29. Grézes, J., Fonlupt, P., Bertenthal, B. I., Delon-Martin, C., Segebarth, C., & Decety, J. (2001). Does perception of biological motion rely on specific brain regions. NeuroImage, 13(5), 775–785. doi: 10.1006/nimg.2000.0740 PubMedCrossRefGoogle Scholar
  30. Grossman, E. D., Blake, R. (1999). Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Research, 39, 3721–3727.Google Scholar
  31. Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12(5), 711–721. doi: 10.1162/089892900562417 PubMedCrossRefGoogle Scholar
  32. Gunns, R. E., Johnsyon, L., & Hudson, S. M. (2002). Victim selection and kinematics: a point-light investigation of vulnerability. Journal of Nonverbal Behavior, 26(3), 129–158.Google Scholar
  33. Gurnsey, R., Roddy, G., & Troje, N. F. (2010). Limits of peripheral direction of discrimination of point-light walkers. Journal of Vision, 10(2), 1–17. doi: 10.1167/10.2.15 PubMedCrossRefGoogle Scholar
  34. Hayfron-Acquah, J. B., Nixon, M. S., & Carter, J. N. (2003). Automatic gait recognition by symmetry analysis. Pattern Recognition Letters, 24(13), 2175–2183. doi: 10.1016/S0167-8655(03)00086-2 CrossRefGoogle Scholar
  35. Hodges, N. J., Hayes, S. J., Breslin, G., & Williams, A. M. (2005). An evaluation of the minimal constraining information during observation for movement reproduction. Acta Psychologica, 119(3), 264–282. doi: 10.1016/j.actpsy.2005.02.002 PubMedCrossRefGoogle Scholar
  36. Hoenkamp, E. (1978). Perceptual cues that determine the labelling of human gait. Journal of Human Movement Studies, 4, 59–69.Google Scholar
  37. Huang, P. S., Harris, C. J., & Nixon, M. S. (1999). Recognising humans by gait via parametric canonical space. Artificial Intelligence in Engineering, 13(4), 359–366. doi: 10.1016/S0954-1810(99)00008-4 CrossRefGoogle Scholar
  38. Ikeda, H., Blake, R., & Watanabe, K. (2005). Eccentric perception of biological motion is unscalably poor. Vision Research, 45(15), 1935–1943. doi: 10.1016/jvisres.2005.02. 001 PubMedCrossRefGoogle Scholar
  39. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14(2), 201–211. Retrieved from http://link.springer CrossRefGoogle Scholar
  40. Johnson, H. M. (2006). Biological motion: A perceptual life detector. Current Biology, 16(10), 376–377. doi: 10.1016/j.cub.2006.04.008 CrossRefGoogle Scholar
  41. Johnson, K. L., & Shiffrar, M. (2013). People watching: Social, perceptual, and neurophysiological studies of body perception. New York: Oxford University Press.Google Scholar
  42. Johnston, L., Hudson, S. M., Richardson, M. J., Gunns, R. E., & Garner, M. (2004). Changing kinematics as a means of reducing vulnerability to physical attack. Journal of Applied Social Psychology, 34(3), 514–537.Google Scholar
  43. Jordan, H., Fallah, M., & Stoner, G. R. (2006). Adaptation of gender derived from biological motion. Nature Neuroscience, 9(6), 738–739. doi: 10.1038/nn1710 PubMedCrossRefGoogle Scholar
  44. Kale, A., Sundaresan, A., Rajagopalan, A. N., Cuntoor, N. P., Roy-Chowdhury, A. K., Kruger, V., & Chellappa, R. (2004). Identification of humans using gait. IEEE Transaction on Image Processing, 13(9), 1163–1173. doi: 10.1109/TIP.2004.832865 CrossRefGoogle Scholar
  45. Kim, M. G., Moon, H. M., Chung, Y., & Pan, S. B. (2012). A survey and proposed framework on the soft biometrics technique for human identification in intelligent video surveillance system. Journal of Biomedicine and Biotechnology, 2012(1), 1–7. doi: 10.1155/2012/614146 Google Scholar
  46. Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception and Psychophysics, 21(6), 575–580. Retrieved from http://link.springer.com/article/10.3758/BF03198740 CrossRefGoogle Scholar
  47. Kozlowski, L. T., & Cutting, J. E. (1978). Recognising the gender of walkers from point-lights mounted on ankles: Some second thoughts. Perception and Psychophysics, 23(5), 459. Retrieved from http://link.springer.com/article/10.3758%2FBF03204 CrossRefGoogle Scholar
  48. Kret, M. E., Pichon, S., Grezes, J., & de Gelder, B. (2011). Similarity and differences in perceiving threat from dynamic faces and bodies. An fMRI study. NeuroImage., 54(2), 1755–1762. doi: 10.1016/j.neuroimage.2010.08.012 CrossRefGoogle Scholar
  49. Kusakunniran, W., Wu, Q., Zhang, J., & Li, H. (2012). Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 42(6), 1654–1668. doi: 10.1109/TSMCB.2012.2197823 CrossRefGoogle Scholar
  50. Lee, T. (2011). Motor control in everyday actions. Champaign, ILL: Human Kinetics.Google Scholar
  51. Little, J. J., & Boyd, J. E. (1998). Recognising people by their gait: The shape of motion. Videre. Journal of Computer Vision Research, 1(2), 1–32. Retrieved from http://www.cs.ubc.ca/labs/lci/papers/docs1998/little-v1n2001.pdf Google Scholar
  52. Liu, Z., & Sarkar, S. (2005). Effect of silhouette quality on hard problems in gait recognition. IEEE Transaction on Systems, Man, and Cybernetics- Part B; Cybernetics, 35(2), 170–183. doi: 10.1109/TSMCB.2004.842251 CrossRefGoogle Scholar
  53. Lu, H. (2010). Structural processing in biological motion perception. Journal of Vision, 10(12), 1–13. doi: 10.1167/10.12.13 CrossRefGoogle Scholar
  54. Mather, G., & Murdoch, L. (1994). Gender discrimination in biological motion displays on dynamic cues. Paper presented at the Proceedings of the Royal Society of London: Series B, 258, 273-279.Google Scholar
  55. Matthews, G., Davies, D. R., Westerman, S. J., & Stammers. (2000). Human performance: Cognition, stress and individual differences. New York, USA: Psychology Press.Google Scholar
  56. Moore, D. G., Hobson, R. P., & Lee, A. (1997). Components of person perception: An investigation with autistic, non-autistic retarded and typically developing children and adolescents. British Journal of Development Psychology., 15(4), 401–423. doi: 10.1111/j.2044-835X.1997.tb00738.x CrossRefGoogle Scholar
  57. Murray, M. P., Drought, A. B., & Kory, R. C. (1964). Walking patterns of normal men. Journal of Bone and Joint Surgery, 46(2), 335–360. Retrieved from http://jbjs.org PubMedGoogle Scholar
  58. Navarro, M. A., & Schafer, J. R. (2001). Detecting deception. FBI Law Enforcement Bulletin, July, 9–13.Google Scholar
  59. Owens, D. A., Antonoff, R. J., & Francis, E. L. (1994). Biological motion and night-time pedestrian conspicuity. Human Factors, 36(4), 718–732.Google Scholar
  60. Parasumaran, R., de Visser, E., Clarke, E., McGarry, W. R., Hussey, E., Shaw, T., & Thompson, J. C. (2009). Detecting threat-related intentional actions of others: Effects of image quality, response mode, and target cuing on vigilance. Journal of Experimental Psychology: Applied, 15(4), 275–290.Google Scholar
  61. Pavlova, M., Krägeloh-Mann, I., Birbaumer, N., & Sokolov, A. (2002). Biological motion shown backwards: The apparent-facing effect. Perception, 31(4), 435–443. doi: 10.1068/p3262 PubMedCrossRefGoogle Scholar
  62. Pavlova, M., Krägeloh-Mann, I., Sokolov, A., & Birbaumer, N. (2001). Recognition of pointlight displays in young children. Perception, 30(8), 925–933. doi: 10.1068/p3 157 PubMedCrossRefGoogle Scholar
  63. Pinto, J., & Shiffrar, M. (2009). The visual perception of human and animal motion in point-light displays. Social Neuroscience, 4(4), 332–346. doi: 10.1080/17470910 902826820 PubMedCrossRefGoogle Scholar
  64. Pollick, F. E., Lestou, V., Ryu, J., & Cho, S. B. (2002). Estimating the efficiency of recognising gender and affect from biological motion. Vision Research, 42(20), 2345–2355. doi: 10.1016/S0042-6989(02)00196-7 PubMedCrossRefGoogle Scholar
  65. Pollick, F. E., Hill, H., Calder, A., & Paterson, H. (2003). Recognising facial expression from spatially and temporally modified movements. Perception, 32(7), 813–826. doi: 10.1068/p3319 PubMedCrossRefGoogle Scholar
  66. Quian-Quiroga, R., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(1), 1102–1107. doi: 10.1038/nature03687 CrossRefGoogle Scholar
  67. Reason, J. (1990). Human error. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  68. Richardson, M. J., & Johnston, L. (2005). Person recognition from dynamic events: The kinematic specification of individual identity walking style. Journal of Nonverbal Behavior, 29(1), 25–44. Retrieved from http://link.springer.com/article/10.1007 CrossRefGoogle Scholar
  69. Runeson, S., & Frykholm, G. (1981). Visual perception of lifted weight. Perceptual and Motor Skills, 7(4), 733–740. doi: 10.1037/0096-1523.7.4.733 Google Scholar
  70. Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an informational basis for person-and-action perception: Expectation, gender, recognition, and deceptive intention. Journal of Experimental Psychology: General, 112(4), 585–615. doi: 10.1037/0096-3445.112.4.585 CrossRefGoogle Scholar
  71. Sayer, J. R., & Mettford, M. L. (2004). High visibility safety apparel and nighttime conspicuity of pedestrians in work zones. Journal of Safety Research, 35(5), 537–546. doi: 10.1016/j.jsr.2004.08.007 PubMedCrossRefGoogle Scholar
  72. Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: The role of expertise. Psychonomic Bulletin and Review, 16(1), 170–175.Google Scholar
  73. Shim, J., & Carlton, L. G. (1997). Perception of kinematic characteristics in the motion of lifted weight. Journal of Motor Behavior, 29(2), 131–147. doi: 10.1080/00222899709600828 PubMedCrossRefGoogle Scholar
  74. Steel, K. A., Adams, R. D., & Canning, C. G. (2006). Identifying runners as football teammates from 400 msec. video-clips. Perceptual and Motor Skills, 103(1), 901–911. doi: 10.2466/pms.103.3.901-911 PubMedGoogle Scholar
  75. Steel, K. A., Adams, R. D., & Canning, C. G. (2007). Identifying swimmers as water-polo or swim team-mates from visual displays of less than one second. Journal of Sports Sciences, 25(11), 1251–1258. doi: 10.1080/02640410601021721 PubMedCrossRefGoogle Scholar
  76. Steel, K. A., Adams, R. D., & Canning, C. G. (2008). Junior football player’s classification of runners as their team-mates from 400-msec video clips. Perceptual and Motor Skills, 107(1), 317–322. doi: 10.2466/PMS.107.1.317-322 PubMedCrossRefGoogle Scholar
  77. Steel, K. A., Adams, R. D., & Canning, C. G. (2012). Liking and response latency in teammate identification: Processing delays below conscious awareness? Perceptual and Motor Skills, 114(2), 519–526. doi: 10.2466/05.07.21.pms.114.2.519-526 PubMedCrossRefGoogle Scholar
  78. Steel, K. A., Adams, R. D., Canning, C. G., & Eisenhuth, J. (2010). The Team-Mate Identification (TM-ID) test: Effect of participant and situation familiarity on response accuracy and latency. International Journal of Sport Science and Coaching., 5(2), 281–290. doi: 10.1260/1747-9541.5.2.281 CrossRefGoogle Scholar
  79. Steel, K. A., & Eisenhuth, J. (2012). The team-mate identification (TM-ID) test: A portable apparatus for collecting decision latencies for players in team invasion sports. International Journal of Sports Science and Engineering, 6(3), 159–164. Retrieved from http://www.worldacademicunion.com/journal/SSCI/SSCIvol06no03 Google Scholar
  80. Stienen, B. M. C., & de Gelder, B. (2011). Fear detection and visual awareness in perceiving bodily expressions. Emotion, 11(5), 1182–1189. doi: 10.1037/a0024032 PubMedCrossRefGoogle Scholar
  81. Stevenage, S. V., Nixon, M. S., & Vince, K. (1999). Visual analysis of gait as a cue to identity. Applied Cognitive Psychology, 13, 513–526. doi: 10.1002/1099-0720.13.6.513 CrossRefGoogle Scholar
  82. Sun, H., & Yuao, T. (2012). Curve aligning approach for gait authentication based on a wearable accelerometer. Physiological Measurement, 33(1), 1111–1120. doi: 10.1088/0967-3334/33/6/1111 PubMedGoogle Scholar
  83. Tanawongsuwan, R., & Bobick, A. (2001). Gait recognition from time normalized joint-angle trajectories in the walking plane. Paper presented at the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Google Scholar
  84. Thompson, J., & Parasuraman, R. (2012). Attention, biological motion, and action. Neuroimage, 59, 4–13.Google Scholar
  85. Thornton, I. M., Pinto, J., & Shiffrar, M. (1998). The visual perception of human locomotion. Cognitive Neuropsychology, 15(6/7/8), 535–552. doi: 10.1080/026432998381014 PubMedCrossRefGoogle Scholar
  86. Tillman, M., & Zacchino, N. (2008). Boots on the ground by dusk: My tribute to Pat Tillman. New York: Rodale Press Inc.Google Scholar
  87. Troje, N. F., Westhoff, C., & Lavrov, M. (2005). Person identification from biological motion: Effects of structural and kinematic cues. Perception and Psychophysics, 67(4), 667–675. Retrieved from http://link.springer.com/article/10.3758/BF0319 PubMedCrossRefGoogle Scholar
  88. Tuttle, S. J., Sayer, J. R., & Buonarosa, M. L. (2009). The conspicuity of first responder safety garments. Journal of Safety Research, 40(3), 191–196. doi: 10.1016/j.jsr.2009.03.002 PubMedCrossRefGoogle Scholar
  89. United States Army. (2013).Operational unit diagrams. Retrieved from http://www.army.mil/info/organization/unitsandcommands/oud/
  90. Vinciarelli, A., Pantic, M., & Bourlard, H. (2009). Social signal processing: Survey of an emerging domain. Image and Vision Computing, 27, 1743–1759.Google Scholar
  91. Wang, L., Ning, H., Hu, W., & Tan, T. (2002, September, 22-24). Gait recognition based on Procrustes Shape Analysis. Paper presented at the 9th IEEE International Conference on Image Processing, Rochester, New York.Google Scholar
  92. Wang, L., Tan, T., Ning, H., & Hu, W. (2003). Silhouette analysis-based gait recognition for human identification. IEEE Transaction on Pattern Analysis and Machine Intelligence, 25(12), 1505–1518. doi: 10.1109/TPAMI.2003.1251144 CrossRefGoogle Scholar
  93. Ward, P., Farrow, D., Harris, K., Williams, A. M., Eccles, D. W., & Ericsson, K. A. (2008). Training perceptual-cognitive skills: Can sport psychology research inform military decision training? Military Psychology, 20(Suppl. 1), 71–102. doi: 10.1080/08995600701804814 CrossRefGoogle Scholar
  94. Weissensteiner, J. R., Abernethy, B., Farrow, D., & Gross, J. (2012). Distinguishing psychological characteristics of expert cricket batsmen. Journal of Science and Medicine in Sport, 15(1), 74–79. doi: 10.1016/j.jsams.2011.07.003 PubMedCrossRefGoogle Scholar
  95. Whittle, M. (1991). Gait analysis: An introduction. London: Butterworth-Heinemann.Google Scholar
  96. Wood, J. M., Tyrrell, R. A., Marszalek, R. P., Lacherez, P. F., Carberry, T. P., & Chu, B. S. (2011). Using reflective clothing to enhance the conspicuity of bicyclists at night. Accident Analysis Prevention, 45, 726–730. doi: 10.1016/j.aap.2011.09.038 PubMedCrossRefGoogle Scholar
  97. Yam, C., Nixon, M. S., & Carter, J. N. (2004). Automated person recognition by walking and running via model based approaches. Pattern Recognition, 37(5), 1057–1072. doi: 10.1016/j.patcog.2003.09.012 CrossRefGoogle Scholar
  98. Yun, J. (2011). User identification using gait patterns on UbiFloorII. Sensors, 11(3), 2611–2639. doi: 10.3390/s110302611 PubMedCentralPubMedCrossRefGoogle Scholar
  99. Zhang, D., & Jain, A. K. (Eds.) 2006. Advances in biometrics: International conference, Hong Kong, China, (Vol. LNCS 3832). Berlin: Springer.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Science and HealthUniversity of Western SydneyPenrithAustralia
  2. 2.Teaching and ProgrammingAustralian College of Physical EducationSydneyAustralia

Personalised recommendations