Psychonomic Bulletin & Review

, Volume 21, Issue 6, pp 1371–1403 | Cite as

Forms of momentum across space: Representational, operational, and attentional

  • Timothy L. Hubbard
Theoretical Review


Cognition can exhibit biases consistent with future expectations, and some of these biases result in momentum-like effects and have been linked with the idea of an internalization of the effects of momentum. These momentum-like effects include representational momentum, operational momentum, and attentional momentum. Similarities and differences between these different momentum-like effects are considered. Hubbard’s (2005) review of representational momentum is updated to include studies published since that review appeared, and the first full reviews of operational momentum and attentional momentum are provided. It is suggested that (1) many variables that influence one of these momentum-like effects have a similar influence on another momentum-like effect, (2) representational momentum, operational momentum, and attentional momentum reflect similar or overlapping mechanisms, and operational momentum and attentional momentum are special cases of representational momentum, and (3) representational momentum, operational momentum, and attentional momentum reflect properties of a more general spatial representation in which change or transformation of a stimulus is mapped onto motion in a spatial coordinate system.


Representational momentum Operational momentum Attentional momentum Spatial representation Dynamics Displacement 


  1. Actis-Grosso, R., Bastianelli, A., & Stucchi, N. (2008). Direction of perceptual displacement of a moving target’s starting and vanishing points: The key role of velocity. Japanese Psychological Research, 50, 253–263. doi: 10.1111/j.1468-5884.2008.00381.x Google Scholar
  2. Amorim, M. A., Lang, W., Lindinger, G., Mayer, D., Deecke, L., & Berthoz, A. (2000). Modulation of spatial orientation processing by mental imagery instructions: A MEG study of representational momentum. Journal of Cognitive Neuroscience, 12, 569–582. doi: 10.1162/089892900562345 PubMedGoogle Scholar
  3. Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system. Neuropsychologia, 42, 1515–1524. doi: 10.1016/j.neuropsychologia.2004.03.003 PubMedGoogle Scholar
  4. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. doi: 10.1146/annurev.psych.59.103006.093639 PubMedGoogle Scholar
  5. Blättler, C., Ferrari, V., Didierjean, A., van Elslande, P., & Marmèche, E. (2010). Can expertise modulate representational momentum? Visual Cognition, 18, 1253–1273. doi: 10.1080/13506281003737119 Google Scholar
  6. Blättler, C., Ferrari, V., Didierjean, A., & Marmèche, E. (2011). Representational momentum in aviation. Journal of Experimental Psychology: Human Perception and Performance, 37, 1569–1577. doi: 10.1037/a0023512 PubMedGoogle Scholar
  7. Brehaut, J. C., & Tipper, S. P. (1996). Representational momentum and memory for luminance. Journal of Experimental Psychology: Human Perception and Performance, 22, 480–501. doi: 10.1037/0096-1523.22.2.480 PubMedGoogle Scholar
  8. Brown, T. A., & Munger, M. P. (2010). Representational momentum, spatial layout, and viewpoint dependency. Visual Cognition, 18, 780–800. doi: 10.1080/13506280903336535 Google Scholar
  9. Charras, P., Brod, G., & Lupiáñez, J. (2012). Is 26 + 26 smaller than 24 + 28? Estimating the approximate magnitude of repeated versus different numbers. Attention, Perception, & Psychophysics, 74, 163–173. doi: 10.3758/s13414-011-0217-4 Google Scholar
  10. Charras, P., Molina, E., & Lupiáñez, J. (2014). Additions are biased by operands: evidence from repeated versus different operands. Psychological Research, 78, 248–265. doi: 10.1007/s00426-013-0491-y PubMedGoogle Scholar
  11. Chien, S., Ono, F., & Watanabe, K. (2013). A transient auditory signal shifts the perceived offset position of a moving visual target. Frontiers in Psychology, 4, 70. doi: 10.3389/fpsyg.2013.00070 PubMedCentralPubMedGoogle Scholar
  12. Choi, H., & Scholl, B. J. (2006). Measuring causal perception: Connections to representational momentum? Acta Psychologica, 123, 91–111. doi: 10.1016/j.actpsy.2006.06.001 PubMedGoogle Scholar
  13. Conners, F. A., Wyatt, B. S., & Dulaney, C. L. (1998). Cognitive representation of motion in individuals with mental retardation. American Journal on Mental Retardation, 102, 438–450. doi: 10.1352/0895-8017 PubMedGoogle Scholar
  14. Cooper, L. A., & Munger, M. P. (1993). Extrapolations and remembering positions along cognitive trajectories: Uses and limitations of analogies to physical momentum. In N. Eilan, R. McCarthy, & B. Brewer (Eds.), Spatial representation: Problems in philosophy and psychology (pp. 112–131). Cambridge: Blackwell.Google Scholar
  15. Courtney, J. R., & Hubbard, T. L. (2008). Spatial memory and explicit knowledge: An effect of instruction on representational momentum. Quarterly Journal of Experimental Psychology, 61, 1778–1784. doi: 10.1080/17470210802194217 Google Scholar
  16. Crollen, V., & Seron, X. (2012). Over-estimation in numerosity estimation tasks: More than an attentional bias? Acta Psychologica, 140, 246–251. doi: 10.1016/j.actpsy.2012.05.003 PubMedGoogle Scholar
  17. de sá Teixeira, N., Hecht, H., & Oliveira, A. M. (2013). The representational dynamics of remembered projectile locations. Journal of Experimental Psychology: Human Perception and Performance, 39, 1690–1699. doi: 10.1037/a0031777
  18. de sá Teixeira, N., & Oliveira, A. M. (2011). Disambiguating the effects of target travelled distance and the target vanishing point upon representational momentum. Journal of Cognitive Psychology, 23, 650–658. doi: 10.1080/20445911.2011.557357 Google Scholar
  19. de sá Teixeira, N., Oliveira, A. M., & Amorim, M. A. (2010). Combined effects of mass and velocity on forward displacement and phenomenological ratings: A functional measurement approach to the momentum metaphor. Psicologica, 31, 659–676.Google Scholar
  20. de sá Teixeira, N., Oliveira, A. M., & Viegas, R. (2008). Functional approach to the integration of kinematic and dynamic variables in causal perception: Is there a link between phenomenology and behavioral responses. Japanese Psychological Research, 50, 232–241. doi: 10.1111./j.1468-5884.2008.00379.x
  21. de sá Teixeira, N., Pimenta, S., & Raposo, V. (2013). A null effect of target’s velocity in the visual representation of motion with schizophrenic patients. Journal of Abnormal Psychology, 122, 223–230. doi: 10.1037/a0029884
  22. Dehaene, S. (2003). The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends in Cognitive Sciences, 7, 145–147. doi: 10.1016/S1364-6613(03)00055-X PubMedGoogle Scholar
  23. DeLucia, P. R., & Maldia, M. M. (2006). Visual memory for moving scenes. Quarterly Journal of Experimental Psychology, 59, 340–360. doi: 10.1080/17470210500151444 Google Scholar
  24. Dickinson, C. A., & Intraub, H. (2008). Transsaccadic representation of layout: What is the time course of boundary extension? Journal of Experimental Psychology: Human Perception and Performance, 34, 543–555. doi: 10.1037/0096-1523.34.3.543 PubMedCentralPubMedGoogle Scholar
  25. Dror, I. E., & Kosslyn, S. M. (1994). Mental imagery and aging. Psychology and Aging, 9, 90–102. doi: 10.1037//0882-7974.9.1.90 PubMedGoogle Scholar
  26. Faust, M. (1990). Representational momentum: A dual process perspective. Eugene: Unpublished doctoral dissertation, University of Oregon.Google Scholar
  27. Finke, R. A., & Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 780–794. doi: 10.1037/0278-7393.11.1-4.780
  28. Finke, R. A., Freyd, J. J., & Shyi, G. C. W. (1986). Implied velocity and acceleration induce transformations of visual memory. Journal of Experimental Psychology: General, 115, 175–188. doi: 10.1037/0096-3445.115.2.175 Google Scholar
  29. Foster, D. H., & Gravano, S. (1982). Overshoot of curvature in visual apparent motion. Perception & Psychophysics, 31, 411–420. doi: 10.3758/BF03204850 Google Scholar
  30. Freyd, J. J. (1987). Dynamic mental representation. Psychological Review, 94, 427–438. doi: 10.1037/0033-295X.94.4.427 PubMedGoogle Scholar
  31. Freyd, J. J. (1993). Five hunches about perceptual processes and dynamic representations. In D. Meyer & S. Kornblum (Eds.), Attention and Performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 99–199). Cambridge: MIT Press.Google Scholar
  32. Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 126–132. doi: 10.1037/0278-7393.10.1.126
  33. Freyd, J. J., & Finke, R. A. (1985). A velocity effect for representational momentum. Bulletin of the Psychonomic Society, 23, 443–446.Google Scholar
  34. Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 259–269. doi: 10.1037/0278-7393.13.2.259
  35. Freyd, J. J., Kelly, M. H., & DeKay, M. L. (1990). Representational momentum in memory for pitch. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 1107–1117. doi: 10.1037/0278-7393.16.6.1107
  36. Freyd, J. J., & Pantzer, T. M. (1995). Static patterns moving in the mind. In S. M. Smith, T. B. Ward, & R. A. Finke (Eds.), The creative cognition approach (pp. 181–204). Cambridge: MIT Press.Google Scholar
  37. Freyd, J. J., Pantzer, T. M., & Cheng, J. L. (1988). Representing statics as forces in equilibrium. Journal of Experimental Psychology: General, 117, 395–407. doi: 10.1037/0096-3445.117.4.395 Google Scholar
  38. Fu, Y. X., Shen, Y., & Dan, Y. (2001). Motion-induced perceptual extrapolation of blurred visual targets. Journal of Neuroscience, 21, RC172.PubMedGoogle Scholar
  39. Futterweit, L. R., & Beilin, H. (1994). Recognition memory for movement in photographs: A developmental study. Journal of Experimental Child Psychology, 57, 163–179. doi: 10.1006/jecp.1994.1008 PubMedGoogle Scholar
  40. Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: from reals to integers. Trends in Cognitive Sciences, 4, 59–65. doi: 10.1016/S1364-6613(99)01424-2 PubMedGoogle Scholar
  41. Getzmann, S. (2005). Representational momentum in spatial hearing does not depend on eye movements. Experimental Brain Research, 165, 229–238. doi: 10.1007/s00221-005-2291-0 PubMedGoogle Scholar
  42. Getzmann, S., & Lewald, J. (2007). Localization of moving sound. Perception & Psychophysics, 69, 1022–1034. doi: 10.3758/BF03193940 Google Scholar
  43. Getzmann, S., & Lewald, J. (2009). Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum. Experimental Brain Research, 193, 437–443. doi: 10.1007/s00221-008-1641-0 PubMedGoogle Scholar
  44. Getzmann, S., Lewald, J., & Guski, R. (2004). Representational momentum in spatial hearing. Perception, 33, 591–599. doi: 10.1068/p5093 PubMedGoogle Scholar
  45. Gibbs, R. W. (2005). Embodiment and cognitive science. New York: Cambridge University Press.Google Scholar
  46. Gilden, D. L. (1991). On the origins of dynamical awareness. Psychological Review, 98, 554–568. doi: 10.1037/0033-295X.98.4.554 PubMedGoogle Scholar
  47. Gray, R., & Thornton, I. M. (2001). Exploring the link between time to collision and representational momentum. Perception, 30, 1007–1022. doi: 10.1068/p3220 PubMedGoogle Scholar
  48. Halpern, A. R., & Kelly, M. H. (1993). Memory biases in left versus right implied motion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 471–484. doi: 10.1037/0278-7393.19.2.471 PubMedGoogle Scholar
  49. Hamm, J. P., & Klein, R. M. (2002). Does attention follow the motion in the “shooting line” illusion? Perception & Psychophysics, 64, 279–291. doi: 10.3758/BF03195792 Google Scholar
  50. Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Visual Cognition, 9, 8–27. doi: 10.1080/13506280143000296 Google Scholar
  51. Hecht, H. (2001). Regularities of the physical world and the absence of their internalization. Behavioral and Brain Sciences, 24, 608–617. doi: 10.1017/S0140525X01000036 PubMedGoogle Scholar
  52. Hidaka, S., Kawachi, Y., & Gyoba, J. (2009). The representation of moving 3-D objects in apparent motion perception. Attention, Perception, & Performance, 71, 1294–1304. doi: 10.3758/APP.71.6.1294 Google Scholar
  53. Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33, 1219–1240. doi: 10.1016/0042-6989(93)90210-N PubMedGoogle Scholar
  54. Hirose, N., & Osaka, N. (2010). Asymmetry in object substitution masking occurs relative to the direction of spatial attention shift. Journal of Experimental Psychology: Human Perception and Performance, 36, 25–37. doi: 10.1037/a0017165 PubMedGoogle Scholar
  55. Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12, 360–365. doi: 10.1111/1467-9280.00367 PubMedGoogle Scholar
  56. Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory & Cognition, 18, 299–309. doi: 10.3758/BF03213883 Google Scholar
  57. Hubbard, T. L. (1993). The effects of context on visual representational momentum. Memory & Cognition, 21, 103–114. doi: 10.3758/BF03211169 Google Scholar
  58. Hubbard, T. L. (1994). Judged displacement: A modular process? American Journal of Psychology, 107, 359–373. doi: 10.2307/1422879 Google Scholar
  59. Hubbard, T. L. (1995a). Auditory representational momentum: Surface form, velocity, and direction effects. American Journal of Psychology, 108, 255–274. doi: 10.2307/1423131 Google Scholar
  60. Hubbard, T. L. (1995b). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 241–254. doi: 10.1037/0278-7393.21.1.241 PubMedGoogle Scholar
  61. Hubbard, T. L. (1995c). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2, 322–338. doi: 10.3758/BF03210971 Google Scholar
  62. Hubbard, T. L. (1996). Displacement in depth: Representational momentum and boundary extension. Psychological Research/Psychologische Forschung, 59, 33–47. doi: 10.1007/BF00419832 Google Scholar
  63. Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: Effects of implied weight and evidence of representational gravity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1484–1493. doi: 10.1037/0278-7393.23.6.1484 Google Scholar
  64. Hubbard, T. L. (1998). Some effects of representational friction, target size, and memory averaging on memory for vertically moving targets. Canadian Journal of Experimental Psychology, 52, 44–49. doi: 10.1037/h0087278 PubMedGoogle Scholar
  65. Hubbard, T. L. (2004). The perception of causality: Insights from Michotte’s launching effect, naive impetus theory, and representational momentum. In A. M. Oliveira, M. P. Teixeira, G. F. Borges, & M. J. Ferro (Eds.), Fechner Day 2004 (pp. 116–121). Coimbra: The International Society for Psychophysics.Google Scholar
  66. Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822–851. doi: 10.3758/BF03196775 Google Scholar
  67. Hubbard, T. L. (2006a). Bridging the gap: Possible roles and contributions of representational momentum. Psicologica, 27, 1–34.Google Scholar
  68. Hubbard, T. L. (2006b). Computational theory and cognition in representational momentum and related types of displacement: A reply to Kerzel. Psychonomic Bulletin & Review, 13, 174–177. doi: 10.3758/BF03193830 Google Scholar
  69. Hubbard, T. L. (2008). Representational momentum contributes to motion induced mislocalization of stationary objects. Visual Cognition, 16, 44–67. doi: 10.1080/13506280601155468 Google Scholar
  70. Hubbard, T. L. (2010). Approaches to representational momentum: Theories and models. In R. Nijhawan & B. Khurana (Eds.), Space and time in perception and action (pp. 338–365). Cambridge: Cambridge University Press.Google Scholar
  71. Hubbard, T. L. (2013a). Launching, entraining, and representational momentum: Evidence consistent with an impetus heuristic in perception of causality. Axiomathes, 23, 633–643. doi: 10.1007/s10516-012-9186-z Google Scholar
  72. Hubbard, T. L. (2013b). Phenomenal causality I: Varieties and variables. Axiomathes, 23, 1–42. doi: 10.1007/s10516-012-9198-8 Google Scholar
  73. Hubbard, T. L. (2013c). Phenomenal causality II: Integration and implication. Axiomathes, 23, 485–524. doi: 10.1007/s10516-012-9200-5 Google Scholar
  74. Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics, 44, 211–221. doi: 10.3758/BF03206290 Google Scholar
  75. Hubbard, T. L., & Blessum, J. A. (2001). A structural dynamic of form: Displacements in memory for the size of an angle. Visual Cognition, 8, 725–749. doi: 10.1080/13506280042000108 Google Scholar
  76. Hubbard, T. L., Blessum, J. A., & Ruppel, S. E. (2001). Representational momentum and Michotte’s (1946/1963) “Launching Effect” paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 294–301. doi: 10.1037/0278-7393.27.1.294
  77. Hubbard, T. L., & Courtney, J. R. (2010). Cross-modal influences on representational momentum and representational gravity. Perception, 39, 851–862. doi: 10.1068/p6538 PubMedGoogle Scholar
  78. Hubbard, T. L., & Favretto, A. (2003). Naive impetus and Michotte’s “Tool Effect:” Evidence from representational momentum. Psychological Research/Psychologische Forschung, 67, 134–152. doi: 10.1007/s00426-002-0122-5 Google Scholar
  79. Hubbard, T. L., Hutchison, J. L., & Courtney, J. R. (2010). Boundary extension: Findings and theories. Quarterly Journal of Experimental Psychology, 63, 1467–1494. doi: 10.1080/17470210903511236
  80. Hubbard, T. L., Kumar, A. M., & Carp, C. L. (2009). Effects of spatial cueing on representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 666–677. doi: 10.1037/a0014870
  81. Hubbard, T. L., & Lange, M. (2010). Prior probabilities and representational momentum. Visual Cognition, 18, 1063–1087. doi: 10.1080/13506281003665708 Google Scholar
  82. Hubbard, T. L., Matzenbacher, D. L., & Davis, S. E. (1999). Representational momentum in children: Dynamic information and analogue representation. Perceptual and Motor Skills, 88, 910–916. doi: 10.2466/pms.1999.88.3.910
  83. Hubbard, T. L., & Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich Effect or an Onset Repulsion Effect. Quarterly Journal of Experimental Psychology, 58A, 961–979. doi: 10.1080/02724980443000368 Google Scholar
  84. Hubbard, T. L., & Ruppel, S. E. (1999). Representational momentum and the landmark attraction effect. Canadian Journal of Experimental Psychology, 53, 242–256. doi: 10.1037/h0087313 Google Scholar
  85. Hubbard, T. L., & Ruppel, S. E. (2000). Spatial memory averaging, the landmark attraction effect, and representational gravity. Psychological Research/Psychologische Forschung, 64, 41–55. doi: 10.1007/s004260000029
  86. Hubbard, T. L., & Ruppel, S. E. (2002). A possible role of naive impetus in Michotte’s “Launching Effect:” Evidence from representational momentum. Visual Cognition, 9, 153–176. doi: 10.1080/13506280143000377 Google Scholar
  87. Hubbard, T. L., & Ruppel, S. E. (2011). Effects of temporal and spatial separation on velocity and strength of illusory line motion. Attention, Perception, & Psychophysics, 73, 1133–1146. doi: 10.3758/s13414-010-0081-7 Google Scholar
  88. Hubbard, T. L., & Ruppel, S. E. (2013a). Displacement of location in illusory line motion. Psychological Research/Psychologische Forschung, 77, 260–276. doi: 10.1007/s00426-012-0428-x Google Scholar
  89. Hubbard, T. L., & Ruppel, S. E. (2013b). A Fröhlich effect and representational gravity in memory for auditory pitch. Journal of Experimental Psychology: Human Perception and Performance, 39, 1153–1164. doi: 10.1037/a0031103 PubMedGoogle Scholar
  90. Hubbard, T. L., & Ruppel, S. E., (2014). Effects of contrast and background on visual representational momentum. Manuscript under review.Google Scholar
  91. Hubbard, T. L., Ruppel, S. E., & Courtney, J. R. (2005). The force of appearance: Gamma movement, naive impetus, and representational momentum. Psicologica, 26, 209–228.Google Scholar
  92. Hudson, M., & Jellema, T. (2011). Resolving ambiguous behavioral intentions by means of involuntary prioritization of gaze processing. Emotion, 11, 681–686. doi: 10.1037/a0023264
  93. Hudson, M., Liu, C. H., & Jellema, T. (2009). Anticipating intentional actions: The effect of eye gaze direction on the judgment of head rotation. Cognition, 112, 423–434. doi: 10.1016/j.cognition.2009.06.011 PubMedGoogle Scholar
  94. Intraub, H. (2002). Anticipatory spatial representation of natural scenes: Momentum without movement? Visual Cognition, 9, 93–119. doi: 10.1080/13506280143000340 Google Scholar
  95. Intraub, H., & Bodamer, J. L. (1993). Boundary extension: Fundamental aspect of pictorial representation or encoding artifact? Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1387–1397. doi: 10.1037/0278-7393.19.6.1387 PubMedGoogle Scholar
  96. Intraub, H., Daniels, K. K., Horowitz, T. S., & Wolfe, J. M. (2008). Looking at scenes while searching for numbers: Dividing attention multiplies space. Perception & Psychophysics, 70, 1337–1349. doi: 10.3758/PP.70.7.1337
  97. Intraub, H., Hoffman, J. E., Wetherhold, C. J., & Stoehs, S. A. (2006). More than meets the eye: The effect of planned fixation on scene representation. Perception & Psychophysics, 68, 759–769. doi: 10.3758/BF03193699 Google Scholar
  98. Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32, 662–673. doi: 10.3758/BF03195857 Google Scholar
  99. Jarraya, M., Amorim, M. A., & Bardy, B. G. (2005). Optical flow and viewpoint change modulate the perception and memorization of complex motion. Perception & Psychophysics, 67, 951–961. doi: 10.3758/BF03193622 Google Scholar
  100. Jarrett, C. B., Phillips, M., Parker, A., & Senior, C. (2002). Implicit motion perception in schizotypy and schizophrenia: A representational momentum study. Cognitive Neuropsychiatry, 7, 1–14. doi: 10.1080/13546800143000104 PubMedGoogle Scholar
  101. Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38, 93–110. doi: 10.1016/S0028-3932(99)00045-7 PubMedGoogle Scholar
  102. Jiang, Y., & Chun, M. M. (2001). Asymmetric object substitution masking. Journal of Experimental Psychology: Human Perception and Performance, 27, 895–918. doi: 10.1037/0096-1523.27.4.895 PubMedGoogle Scholar
  103. Johnston, H. M., & Jones, M. R. (2006). Higher order pattern structure influences auditory representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 32, 2–17. doi: 10.1037/0096-1523.32.1.2 PubMedGoogle Scholar
  104. Joordens, S., Spalek, T. M., Razmy, S., & van Duijn, M. (2004). A Clockwork Orange: Compensation opposing momentum in memory for location. Memory & Cognition, 32, 39–50. doi: 10.3758/BF03195819 Google Scholar
  105. Jordan, J. S., & Hunsinger, M. (2008). Learned patterns of action-effect anticipation contribute to the spatial displacement of continuously moving stimuli. Journal of Experimental Psychology: Human Perception and Performance, 34, 113–124. doi: 10.1037/0096-1523.34.1.113 PubMedGoogle Scholar
  106. Jordan, J. S., & Knoblich, G. (2004). Spatial perception and control. Psychonomic Bulletin & Review, 11, 54–59. doi: 10.3758/BF03206460 Google Scholar
  107. Jordan, J. S., Stork, S., Knuf, L., Kerzel, D., & Müsseler, J. (2002). Action planning affects spatial localization. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action: Attention and performance XIX (pp. 158–176). New York: Oxford University Press.Google Scholar
  108. Kelly, M. H., & Freyd, J. J. (1987). Explorations of representational momentum. Cognitive Psychology, 19, 369–401. doi: 10.1016/0010-0285(87)90009-0 PubMedGoogle Scholar
  109. Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40, 3703–3715. doi: 10.1016/S0042-6989(00)00226-1 PubMedGoogle Scholar
  110. Kerzel, D. (2003a). Attention maintains mental extrapolation of target position: Irrelevant distractors eliminate forward displacement after implied motion. Cognition, 88, 109–131. doi: 10.1016/S0010-0277(03)00018-0 PubMedGoogle Scholar
  111. Kerzel, D. (2003b). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43, 2623–2635. doi: 10.1016/S0042-6989(03)00466-8 PubMedGoogle Scholar
  112. Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum”. Psychonomic Bulletin & Review, 13, 166–173. doi: 10.3758/BF03193829 Google Scholar
  113. Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13, 1975–1978. doi: 10.1016/j.cub.2003.10.054 PubMedGoogle Scholar
  114. Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27, 829–840. doi: 10.1037//0096-1523.27.4.829 PubMedGoogle Scholar
  115. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4, 138–147. doi: 10.1016/S1364-6613(00)01452-2 PubMedGoogle Scholar
  116. Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71, 803–821. doi: 10.3758/APP.71.4.803 Google Scholar
  117. Knops, A., Zitzmann, S., & McCrink, K. (2013). Examining the presence and determinants of operational momentum in childhood. Frontiers in Psychology, 4, 235. doi: 10.3389/fpsyc.2013.00325 Google Scholar
  118. Kosslyn, S. M. (1980). Image and mind. Cambridge: Harvard University Press.Google Scholar
  119. Kosslyn, S. M. (1994). Image and brain. Cambridge: MIT Press.Google Scholar
  120. Kourtzi, Z., & Kanwisher, N. (2000). Activation in human MT/MST for static images with implied motion. Journal of Cognitive Neuroscience, 12, 1–8. doi: 10.1162/08989290051137594 Google Scholar
  121. Kozhevnikov, M., & Hegarty, M. (2001). Impetus beliefs as default heuristics: Dissociation between explicit and implicit knowledge about motion. Psychonomic Bulletin & Review, 8, 439–453. doi: 10.3758/BF03196179 Google Scholar
  122. Krumhansl, C. R. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press.Google Scholar
  123. Kubovy, M., & Epstein, W. (2001). Internalization: A metaphor we can live without. Behavioral and Brain Sciences, 24, 618–625. doi: 10.1017/S0140525X01000048 PubMedGoogle Scholar
  124. Lenggenhager, B., Loetscher, T., Kavan, N., Pallich, G., Brodtmann, A., Nicholls, M. E. R., & Brugger, P. (2012). Paradoxical extension into the contralesional hemispace in spatial neglect. Cortex, 48, 1320–1328. doi: 10.1016/j.cortex.2011.10.003 PubMedGoogle Scholar
  125. Lindemann, O., & Tira, M. D. (2011). Operational momentum in numerosity production judgments of multi-digit number problems. Journal of Psychology, 219, 50–57. doi: 10.1027/2151-2604/a000046 Google Scholar
  126. Longo, M. R., & Lourenco, S. F. (2007). Spatial attention and the mental number line: Evidence for characteristic biases and compression. Neuropsychologia, 45, 1400–1407. doi: 10.1016/j.neuropychologia.2006.11.002 PubMedGoogle Scholar
  127. Machado, L., & Rafal, R. D. (2004). Inhibition of return generated by voluntary saccades is independent of attentional momentum. Quarterly Journal of Experimental Psychology, 57A, 789–796. doi: 10.1080/02724980343000486 Google Scholar
  128. Maus, G. W., & Nijhawan, R. (2006). Forward displacement of fading objects in motion: The role of transient signals in perceiving position. Vision Research, 46, 4375–4381. doi: 10.1016/j.visres.2006.08.028 PubMedGoogle Scholar
  129. Maus, G. W., & Nijhawan, R. (2009). Going, going, gone: Localizing abrupt offsets of moving objects. Journal of Experimental Psychology: Human Perception and Performance, 35, 611–626. doi: 10.1037/a0012317 PubMedGoogle Scholar
  130. McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69, 1324–1333. doi: 10.3758/BF03192949 Google Scholar
  131. McCrink, K., & Wynn, K. (2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103, 400–408. doi: 10.1016/j.jecp.2009.01.013
  132. McGeorge, P., Beschin, N., & Della Sala, S. (2006). Representing target motion: The role of the right hemisphere in the forward displacement bias. Neuropsychology, 20, 708–715. doi: 10.1037/0894-4105.20.6.708 PubMedGoogle Scholar
  133. Michotte, A. (1963). The perception of causality (T. R. Miles & E. Miles, Trans.). New York: Basic Books. (Original work published 1946).Google Scholar
  134. Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principle components analysis of dynamic spatial memory biases. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1076–1083. doi: 10.1037/a0012794 PubMedGoogle Scholar
  135. Moyer, R. S., & Bayer, R. H. (1976). Mental comparison and the symbolic distance effect. Cognitive Psychology, 8, 228–246. doi: 10.1016/0010-0285(76)90025-6 Google Scholar
  136. Moyer, R. S., & Landauer. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519–1520. doi: 10.1038/2151519a0 PubMedGoogle Scholar
  137. Munger, M. P., Dellinger, M. C., Lloyd, T. G., Johnson-Reid, K., Tonelli, N. J., Wolf, K., & Scott, J. M. (2006). Representational momentum in scenes: Learning spatial layout. Memory & Cognition, 34, 1557–1568. doi: 10.3758/BF03195919
  138. Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location. Visual Cognition, 9, 177–194. doi: 10.1080/13506280143000386 Google Scholar
  139. Munger, M. P., & Owens, T. R. (2004). Representational momentum and the flash-lag effect. Visual Cognition, 11, 81–103. doi: 10.1080/13506280344000257 Google Scholar
  140. Munger, M. P., Owens, T. R., & Conway, J. E. (2005). Are boundary extension and representational momentum related? Visual Cognition, 12, 1041–1056. doi: 10.1080/13506280444000643
  141. Munger, M. P., Solberg, J. L., & Horrocks, K. K. (1999). The relationship between mental rotation and representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 1557–1568. doi: 10.1037/0278-7393.25.6.1557
  142. Munger, M. P., Solberg, J. L., Horrocks, K. K., & Preston, A. S. (1999). Representational momentum for rotations in depth: Effects of shading and axis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 157–171. doi: 10.1037/0278-7393.25.1.157
  143. Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum. Visual Cognition, 9, 120–138. doi: 10.1080/13506280143000359 Google Scholar
  144. Nagai, M., Kazai, K., & Yagi, A. (2002). Larger forward displacement in the direction of gravity. Visual Cognition, 9, 28–40. doi: 10.1080/13506280143000304
  145. Nagai, M., & Saiki, J. (2005). Illusory motion and representational momentum. Perception & Psychophysics, 67, 855–866. doi: 10.3758/BF03193538 Google Scholar
  146. Nagai, M., & Yagi, A. (2001). The pointedness effect on representational momentum. Memory & Cognition, 29, 91–99. doi: 10.3758/BF03195744 Google Scholar
  147. O’Driscoll, G. A., & Callahan, B. L. (2008). Smooth pursuit in schizophrenia: A meta-analytic review of research since 1993. Brain and Cognition, 68, 359–370. doi: 10.1016/j.bandc.2008.08.023 PubMedGoogle Scholar
  148. Pavan, A., Cuturi, L. F., Maniglia, M., Casco, C., & Campana, G. (2011). Implied motion from static photographs influences the perceived position of stationary objects. Vision Research, 51, 187–194. doi: 10.1016/j.visres.2010.11.004 PubMedGoogle Scholar
  149. Perry, L. K., Smith, L. B., & Hockema, S. A. (2008). Representational momentum and children’s sensori-motor representations of objects. Developmental Science, 11, F17–F23. doi: 10.1111/j.1467-7687.2008.00672.x PubMedGoogle Scholar
  150. Pinhas, M., & Fischer, M. (2008). Mental movements with magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109, 408–415. doi: 10.1016/j.cognition.2008.09.003 PubMedGoogle Scholar
  151. Piotrowski, A. S., & Jakobson, L. S. (2011). Representational momentum in older adults. Brain and Cognition, 77, 106–112. doi: 10.1016/j.bandc.2011.05.002 PubMedGoogle Scholar
  152. Poljansek, A. (2002). The effect of motion acceleration on displacement of continuous and staircase motion in the frontoparallel plane. Psiholoska Obzorja/Horizons of Psychology, 11, 7–21.Google Scholar
  153. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X (pp. 531–556). Hillsdale: Erlbaum.Google Scholar
  154. Posner, M. I., Rafal, R. D., Choate, L. S., & Vaughn, J. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211–228. doi: 10.1080/02643298508252866 Google Scholar
  155. Prather, R. W. (2012). Connecting neural coding to number cognition: a computational account. Developmental Science, 15, 589–600. doi: 10.1111/j.1467-7687.2012.01156.x PubMedCentralPubMedGoogle Scholar
  156. Pratt, J., & Hommel, B. (2003). Symbolic control of visual attention: The role of working memory and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 29, 835–845. doi: 10.1037/0096-1523.29.5.835 PubMedGoogle Scholar
  157. Pratt, J., Spalek, T. M., & Bradshaw, F. (1999). The time to detect targets at inhibited and noninhibited locations: Preliminary evidence for attentional momentum. Journal of Experimental Psychology: Human Perception and Performance, 25, 730–746. doi: 10.1037/0096-1523.25.3.730
  158. Rao, H., Han, S., Jiang, Y., Xue, Y., Gu, H., Cui, Y., & Gao, D. (2004). Engagement of the prefrontal cortex in representational momentum: An fMRI study. NeuroImage, 23, 98–103. doi: 10.1016/j.neuroimage.2004.05.016 PubMedGoogle Scholar
  159. Reed, C. L., & Vinson, N. G. (1996). Conceptual effects on representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 22, 839–850. doi: 10.1037/0096-1523.22.4.839 PubMedGoogle Scholar
  160. Ruppel, S. E., Fleming, C. N., & Hubbard, T. L. (2009). Representational momentum is not (totally) impervious to error feedback. Canadian Journal of Experimental Psychology, 63, 49–58. doi: 10.1037/a0013980 PubMedGoogle Scholar
  161. Samuel, A. G., & Kat, D. (2003). Inhibition of return: A graphical meta-analysis of its time course and an empirical test of its temporal and spatial properties. Psychonomic Bulletin & Review, 10, 897–906. doi: 10.3758/BF03196550 Google Scholar
  162. Samuel, A. G., & Weiner, S. K. (2001). Attentional consequences of object appearance and disappearance. Journal of Experimental Psychology: Human Perception and Performance, 27, 1433–1451. doi: 10.1037/0096-1523.27.6.1433
  163. Schmiedchen, K., Freigang, C., Nitsche, I., & Rübsamen, R. (2012). Crossmodal interactions and multisensory integration in the perception of audio-visual motion – A free-field study. Brain Research, 1466, 99–111. doi: 10.1016/j.brainres.2012.05.015 PubMedGoogle Scholar
  164. Schmiedchen, K., Freigang, C., Rübsamen, R., & Richter, N. (2013). A comparison of visual and auditory representational momentum in spatial tasks. Attention, Perception, & Psychophysics, 75, 1507–1519. doi: 10.3758/s13414-013-0495-0 Google Scholar
  165. Senior, C., Barnes, J., Giampietroc, V., Simmons, A., Bullmore, E. T., Brammer, M., & David, A. S. (2000). The functional neuroanatomy of implicit-motion perception or “representational momentum”. Current Biology, 10, 16–22. doi: 10.1016/S0960-9822(99)00259-6 PubMedGoogle Scholar
  166. Senior, C., Ward, J., & David, A. S. (2002). Representational momentum and the brain: An investigation of the functional necessity of V5/MT. Visual Cognition, 9, 81–92. doi: 10.1080/13506280143000331 Google Scholar
  167. Shepard, R. N. (1975). Form, formation, and transformation of internal representations. In R. L. Solso (Ed.), Information processing and cognition: The Loyola Symposium (pp. 87–122). Hillsdale: Erlbaum.Google Scholar
  168. Shepard, R. N. (1981). Psychophysical complementarity. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptual organization (pp. 279–341). Hillsdale: Erlbaum.Google Scholar
  169. Shepard, R. N. (1994). Perceptual-cognitive universals as reflections of the world. Psychonomic Bulletin & Review, 1, 2–28. doi: 10.3758/BF03200759 Google Scholar
  170. Shepard, R. N., & Cooper, L. A. (1992). Representation of colors in the blind, color-blind, and normally sighted. Psychological Science, 3, 97–104. doi: 10.1111/j.1467-9280.1992.tb00006.x
  171. Shiffrar, M., & Freyd, J. J. (1990). Apparent motion of the human body. Psychological Science, 1, 257–264. doi: 10.1111/j.1467-9280.1990.tb00210.x Google Scholar
  172. Snyder, J. J., Schmidt, W. C., & Kingstone, A. (2001). Attentional momentum does not underlie the inhibition of return effect. Journal of Experimental Psychology: Human Perception and Performance, 27, 1420–1432. doi: 10.1037//0095-1523.27.6.1420 PubMedGoogle Scholar
  173. Snyder, J. J., Schmidt, W. C., & Kingstone, A. (2009). There’s little room for attentional momentum. Journal of Experimental Psychology: Human Perception and Performance, 35, 1726–1737. doi: 10.1037/a0016885 PubMedGoogle Scholar
  174. Spalek, T. M., & Hammad, S. (2004). Supporting the attentional momentum view of IOR: Is attention biased to go right? Perception & Psychophysics, 66, 219–233. doi: 10.3758/BF03194874 Google Scholar
  175. Stork, A., & Müsseler, J. (2004). Perceived localizations and eye movements with action-generated and computer-generated vanishing points of moving stimuli. Visual Cognition, 11, 299–314. doi: 10.1080/13506280344000365
  176. Sumner, P. (2006). Inhibition versus attentional momentum in cortical and collicular mechanisms of IOR. Cognitive Neuropsychology, 23, 1035–1048. doi: 10.1080/02643290600588350 PubMedGoogle Scholar
  177. Taya, S., & Miura, K. (2010). Cast shadow can modulate the judged final position of a moving target. Attention, Perception, & Psychophysics, 72, 1930–1937. doi: 10.3758/APP.72.7.1930 Google Scholar
  178. Taylor, N. M., & Jakobson, L. S. (2010). Representational momentum in children born preterm and at term. Brain and Cognition, 72, 464–471. doi: 10.1016/j.bandc.2010.01.003 PubMedGoogle Scholar
  179. Teramoto, W., Hidaka, S., Gyoba, J., & Suzuki, Y. (2010). Auditory temporal cues can modulate visual auditory representational momentum. Attention, Perception, & Psychophysics, 72, 2215–2226. doi: 10.3758/BF03196696 Google Scholar
  180. Thornton, I. M., & Hayes, A. E. (2004). Anticipating action in complex scenes. Visual Cognition, 11, 341–370. doi: 10.1080/13506280344000374 Google Scholar
  181. Uono, S., Sato, W., & Toichi, M. (2010). Brief report: Representational momentum for dynamic facial expressions in pervasive developmental disorder. Journal of Autism and Developmental Disorders, 40, 371–377. doi: 10.1007/s10803-009-0870-9
  182. van der Gaag, C., Minderaa, R. B., & Keysers, C. (2007). Facial expressions: What the mirror neuron system can and cannot tell us. Social Neuroscience, 2, 179–222. doi: 10.1080/17470910701376878 PubMedGoogle Scholar
  183. Verfaillie, K., & d’Ydewalle, G. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 302–313. doi: 10.1037/0278-7393.17.2.302 PubMedGoogle Scholar
  184. Verfaillie, K., & Daems, A. (2002). Representing and anticipating human actions in vision. Visual Cognition, 9, 217–232. doi: 10.1080/13506280143000403 Google Scholar
  185. Vinson, N. G., & Reed, C. L. (2002). Sources of object-specific effects in representational momentum. Visual Cognition, 9, 41–65. doi: 10.1080/13506280143000313
  186. Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638–667. doi: 10.1037/0033-2909.88.3.638 PubMedGoogle Scholar
  187. White, H., Minor, S. W., Merrell, J., & Smith, T. (1993). Representational-momentum effects in the cerebral hemispheres. Brain and Cognition, 22, 161–170. doi: 10.1006/brcg.1993.1031
  188. White, P. A. (2007). Impressions of force in visual perception of collision events: A test of the causal asymmetry hypothesis. Psychonomic Bulletin & Review, 14, 647–652. doi: 10.3758/BF03196815
  189. White, P. A. (2009). Perception of forces exerted by objects in collision events. Psychological Review, 116, 580–601. doi: 10.1037/a0016337 PubMedGoogle Scholar
  190. White, P. A. (2012). The experience of force: The role of haptic experience of forces in visual perception of object motion and interactions, mental simulation, and motion-related judgments. Psychological Bulletin, 138, 589–615. doi: 10.1037/a0025587 PubMedGoogle Scholar
  191. Whitney, D., & Cavanagh, P. (2002). Surrounding motion affects the perceived locations of moving stimuli. Visual Cognition, 9, 139–152. doi: 10.1080/13506280143000368 Google Scholar
  192. Wilson, M., Lancaster, J., & Emmorey, K. (2010). Representational momentum for the human body: Awkwardness matters, experience does not. Cognition, 116, 242–250. doi: 10.1016/j.cognition.2010.05.006 PubMedCentralPubMedGoogle Scholar
  193. Winawer, J., Huk, A. C., & Boroditsky, L. (2008). A motion aftereffect from still photographs depicting motion. Psychological Science, 19, 276–283. doi: 10.1111/j.1467-9280.2008.02080.x PubMedGoogle Scholar
  194. Wood, G., Willmes, K., Nuerk, H. C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489–525.Google Scholar
  195. Yoshikawa, S., & Sato, W. (2006). Enhanced perceptual, emotional, and motor processing in response to dynamic facial expressions of emotion. Japanese Psychological Research, 48, 213–222. doi: 10.1111/j.1468-5884.2006.00321.x Google Scholar
  196. Yoshikawa, S., & Sato, W. (2008). Dynamic facial expressions of emotion induce representational momentum. Cognitive, Affective, & Behavioral Neuroscience, 8, 25–31. doi: 10.3758/CABN.8.1.25 Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Fort WorthUSA

Personalised recommendations