Advertisement

Psychonomic Bulletin & Review

, Volume 21, Issue 6, pp 1353–1370 | Cite as

Discovering your inner Gibson: Reconciling action-specific and ecological approaches to perception–action

  • Jessica K. WittEmail author
  • Michael A. Riley
Theoretical Review

Abstract

Both the action-specific perception account and the ecological approach to perception–action emphasize the role of action in perception. However, the action-specific perception account demonstrates that different percepts are possible depending on the perceiver’s ability to act, even when the same optical information is available. These findings challenge one of the fundamental claims of the ecological approach—that perception is direct—by suggesting that perception is mediated by internal processes. Here, we sought to resolve this apparent discrepancy. We contend that perception is based on the controlled detection of the information available in a global array that includes higher-order patterns defined across interoceptive and exteroceptive stimulus arrays. These higher-order patterns specify the environment in relation to the perceiver, so direct sensitivity to them would be consistent with the ecological claims that perception of the environment is direct and animal-specific. In addition, the action-specific approach provides further evidence for the theory of affordances, by demonstrating that even seemingly abstract properties of the environment, such as distance and size, are ultimately perceived in terms of an agent’s action capabilities.

Keywords

Visual perception Embodied cognition 

Notes

Author note

Both authors contributed equally. The work was supported by NSF Grant No. BCS-0957051 to J.K.W.

References

  1. Adolph, K. E., Eppler, M. A., & Gibson, E. J. (1993). Crawling versus walking infants’ perception of affordances for locomotion over sloping surfaces. Child Development, 64, 1158–1174.PubMedGoogle Scholar
  2. Adriani, C. M., & Kaufman, M. P. (1998). Effect of arterial occlusion on response of the group III and IV afferents to dynamic exercise. Journal of Applied Physiology, 84, 1827–1833.Google Scholar
  3. Arzamarski, R., Isenhower, R. W., Kay, B. A., Turvey, M. T., & Michaels, C. F. (2010). Effects of intention and learning on attention to information in dynamic touch. Attention, Perception, & Psychophysics, 72, 721–735. doi: 10.3758/APP.72.3.721 Google Scholar
  4. Balcetis, E., & Dunning, D. (2010). Wishful seeing: More desired objects are seen as closer. Psychological Science, 21, 147–152. doi: 10.1177/0956797609356283 PubMedGoogle Scholar
  5. Bechara, A. (2004). The role of emotion in decision making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55, 30–40.PubMedGoogle Scholar
  6. Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15. doi: 10.1016/0010-0277(94)90018-3 PubMedGoogle Scholar
  7. Bestler, M., Schandry, R., Weitkunat, R., & Alt, E. (1990). Kardiodynamische Determinanten der Herzwahrnehmung [Cardiodynamic determinants of heartbeat perception]. Zeitschrift für experimentelle und angewandte Psychologie, 37, 361–377.PubMedGoogle Scholar
  8. Bhalla, M., & Proffitt, D. R. (1999). Visual–motor recalibration in geographical slant perception. Journal of Experimental Psychology: Human Perception and Performance, 25, 1076–1096. doi: 10.1037/0096-1523.25.4.1076 PubMedGoogle Scholar
  9. Bian, Z., & Andersen, G. J. (2013). Aging and the perception of egocentric distance. Psychology and Aging, 28, 813–825.PubMedCentralPubMedGoogle Scholar
  10. Bingham, G. P., & Pagano, C. C. (1998). The necessity of a perception–action approach to definite distance perception: Monocular distance perception to guide reaching. Journal of Experimental Psychology: Human Perception and Performance, 24, 145–168. doi: 10.1037/0096-1523.24.1.145 PubMedGoogle Scholar
  11. Bingham, G. P., & Stassen, M. G. (1994). Monocular egocentric distance information generated by head movement. Ecological Psychology, 6, 219–238.Google Scholar
  12. Bingham, G. P., Schmidt, R. C., & Rosenblum, L. D. (1989). Hefting for a maximum distance throw: A smart perceptual mechanism. Journal of Experimental Psychology: Human Perception and Performance, 15, 507–528. doi: 10.1037/0096-1523.15.3.507 PubMedGoogle Scholar
  13. Botvinick, M., & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391, 756.PubMedGoogle Scholar
  14. Cameron, O. G. (2002). Visceral sensory neuroscience: Interoception. Oxford: Oxford University Press.Google Scholar
  15. Cañal-Bruland, R., & van der Kamp, J. (2009). Action goals influence action-specific perception. Psychonomic Bulletin & Review, 16, 1100–1105. doi: 10.3758/PBR.16.6.1100 Google Scholar
  16. Carello, C., & Turvey, M. T. (2000). Rotational dynamics and dynamic touch. In M. Heller (Ed.), Touch, representation and blindness (pp. 27–66). Oxford: Oxford University Press.Google Scholar
  17. Chernigovskiy, V. N. (1967). Interoceptors. Washington, DC: American Psychological Association.Google Scholar
  18. Chrastil, E. R., & Warren, W. H. (2014). Does the human odometer use an extrinsic or intrinsic metric? Attention, Perception, & Psychophysics, 76, 230–246. doi: 10.3758/s13414-013-0549-3 Google Scholar
  19. Cole, S., Balcetis, E., & Dunning, D. (2013). Affective signals of threat produce perceived proximity. Psychological Science, 24, 34–40. doi: 10.1177/0956797612446953 PubMedGoogle Scholar
  20. Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3, 655–666. doi: 10.1038/nrn894 PubMedGoogle Scholar
  21. Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13, 500–505.PubMedGoogle Scholar
  22. Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493, 154–166.PubMedGoogle Scholar
  23. Critchley, H. D., Wiens, S., Rothshtein, P., Öhman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7, 189–195.PubMedGoogle Scholar
  24. Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. New York: Harcourt.Google Scholar
  25. Davoli, C. C., Brockmole, J. R., & Witt, J. K. (2012). Compressing perceived distance with remote tool-use: Real, imagined, and remembered. Journal of Experimental Psychology: Human Perception and Performance, 38, 80–89. doi: 10.1037/a0024981 PubMedGoogle Scholar
  26. Doerrfeld, A., Sebanz, N., & Shiffrar, M. (2012). Expecting to lift a box together makes the load look lighter. Psychological Research, 76, 467–475. doi: 10.1007/s00426-011-0398-4 PubMedCentralPubMedGoogle Scholar
  27. Dworkin, B. R. (2007). Interoception. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 482–506). Cambridge: Cambridge University Press.Google Scholar
  28. Eckert, M. A., Menon, V., Walczak, A., Ahlstrom, J., Denslow, S., Horwitz, A., & Dubno, J. R. (2009). At the heart of the ventral attention system: The right anterior insula. Human Brain Mapping, 30, 2530–2541. doi: 10.1002/hbm.20688 PubMedCentralPubMedGoogle Scholar
  29. Fajen, B. R., Riley, M. A., & Turvey, M. T. (2009). Information, affordances, and the control of action in sport. International Journal of Sport Psychology, 40, 79–107.Google Scholar
  30. Farrer, C., & Frith, C. D. (2002). Experiencing oneself vs. another person as being the cause of an action: The neural correlates of the experience of agency. NeuroImage, 15, 596–603.PubMedGoogle Scholar
  31. Fath, A. J., & Fajen, B. R. (2011). Static and dynamic visual information about the size and passability of an aperture. Perception, 40, 887–904. doi: 10.1068/p6917 PubMedCentralPubMedGoogle Scholar
  32. Fink, G. R., Frackowiak, R. S. J., Pietrzyk, U., & Passingham, R. E. (1997). Multiple nonprimary motor areas in the human cortex. Journal of Neurophysiology, 77, 2164–2174.PubMedGoogle Scholar
  33. Firestone, C. (2013). How “paternalistic” Is spatial perception? Why wearing a heavy backpack doesn’t—and couldn’t—make hills look steeper. Perspectives on Psychological Science, 8, 455–473.Google Scholar
  34. Fodor, J. A., & Pylyshyn, Z. (1981). How direct is visual perception? Some reflections on Gibson’s “ecological approach. Cognition, 9, 139–196.PubMedGoogle Scholar
  35. Friederich, H. C., Brooks, S., Uhera, R., Campbell, I. C., Giampietro, V., Brammer, M., & Treasure, J. (2010). Neural correlates of body dissatisfaction in anorexia nervosa. Neuropsychologia, 48, 2878–2885.PubMedGoogle Scholar
  36. Gardner, D. L., Mark, L. S., Ward, J. A., & Edkins, H. (2001). How do task characteristics affect the transitions between seated and standing reaches? Ecological Psychology, 13, 245–274.Google Scholar
  37. Gibson, E. J. (1963). Perceptual learning. Annual Review of Psychology, 14, 29–56.PubMedGoogle Scholar
  38. Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.Google Scholar
  39. Gibson, E. J. (1969). Principles of perceptual learning and development. New York: Appleton-Century-Crofts.Google Scholar
  40. Gibson, J. J. (1975). Note on proprioception in relation to somaesthesis, self-awareness, and introspection. Unpublished manuscript. Retrieved May 7, 2013, from www.trincoll.edu/depts/ecopsyc/perils/folder6/proprioception.html
  41. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.Google Scholar
  42. Gibson, J. J., & Gibson, E. J. (1955). Perceptual learning: Differentiation or enrichment? Psychological Review, 62, 32–41. doi: 10.1037/h0048826 PubMedGoogle Scholar
  43. Gibson, E. J., & Pick, A. D. (2000). An ecological approach to perceptual learning and development. New York: Oxford University Press.Google Scholar
  44. Goldstein, D. S., Ross, R. S., & Brady, J. V. (1977). Biofeedback heart rate training during exercise. Biofeedback and Self Regulation, 2, 107–126.PubMedGoogle Scholar
  45. Gonzalez, C., Almaraz, L., Obeso, A., & Rigual, R. (1994). Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiological Review, 74, 829–898.Google Scholar
  46. Gray, R. (2013). Being selective at the plate: Processing dependence between perceptual variables relates to hitting goals and performance. Journal of Experimental Psychology: Human Perception and Performance, 39, 1124–1142.PubMedGoogle Scholar
  47. Haggard, P., & Jundi, S. (2009). Rubber hand illusions and size–weight illusions: Self-representation modulates representation of external objects. Perception, 38, 1796–1803. doi: 10.1068/p6399 PubMedGoogle Scholar
  48. Harber, K. D., Yeung, D., & Iacovelli, A. (2011). Psychosocial resources, threat, and the perception of distance and height: Support for the resources and perception model. Emotion, 11, 1080–1090. doi: 10.1037/a0023995 PubMedGoogle Scholar
  49. Harrison, S. J., & Turvey, M. T. (2009). Load affects human odometry for travelled distance but not straight-line distance. Neuroscience Letters, 462, 140–143.PubMedGoogle Scholar
  50. Harrison, S. J., Hajnal, A., Lopresti-Goodman, S., Isenhower, R. W., & Kinsella-Shaw, J. M. (2011). Perceiving action-relevant properties of tools through dynamic touch: Effects of mass distribution, exploration style, and intention. Journal of Experimental Psychology: Human Perception and Performance, 37, 193–206.PubMedGoogle Scholar
  51. Heft, H. (1989). Affordances and the body: An intentional analysis of Gibson’s ecological approach to visual perception. Journal for the Theory of Social Behavior, 19, 1–30.Google Scholar
  52. Herbert, B. M., & Pollatos, O. (2012). Body in the mind: On the relationship between interoception and embodiment. Topics in Cognitive Sciences, 4, 692–704.Google Scholar
  53. Herbert, B. M., Ulbrich, P., & Schandry, R. (2007). Interoceptive sensitivity and physical effort: Implications for the self-control of physical load in everyday life. Psychophysiology, 44, 194–202.PubMedGoogle Scholar
  54. Ishak, S., Adolph, K. E., & Lin, G. C. (2008). Perceiving affordances for fitting through apertures. Journal of Experimental Psychology: Human Perception and Performance, 34, 1501–1514. doi: 10.1037/0096-1523.34.5.1501 PubMedCentralPubMedGoogle Scholar
  55. Jackson, S., & Csíkszentmihályi, M. (1999). Flow in sports: The keys to optimal experiences and performances. Champaign: Human Kinetics.Google Scholar
  56. Jacobs, D. M., & Michaels, C. F. (2006). Lateral interception I: Operative optical variables, attunement, and calibration. Journal of Experimental Psychology: Human Perception and Performance, 32, 443–458. doi: 10.1037/0096-1523.32.2.443 PubMedGoogle Scholar
  57. Jacobs, D. M., & Michaels, C. F. (2007). Direct learning. Ecological Psychology, 19, 321–349.Google Scholar
  58. Jayne, B. C., & Riley, M. A. (2007). Scaling of the axial morphology and gap-bridging ability of the brown tree snake (Boiga irregularis). Journal of Experimental Biology, 210, 1148–1160.PubMedGoogle Scholar
  59. Jiang, Y., & Mark, L. S. (1994). The effect of gap depth on the perception of whether a gap is crossable. Perception & Psychophysics, 56, 691–700.Google Scholar
  60. Katkin, E. S. (1985). Blood, sweat, and tears—Individual differences in autonomic self-perception—Presidential address. Psychophysiology, 22, 125–137.PubMedGoogle Scholar
  61. Kaufman, M. P., & Forster, H. V. (1996). Reflexes controlling circulatory, ventilatory, and airway responses to exercise. In L. B. Rowell & J. T. Shepherd (Eds.), Handbook of physiology, Section 12, Exercise: Regulation and integration of multiple systems (pp. 381–447). New York: Oxford University Press.Google Scholar
  62. Kaufman, M. P., Longhurst, J. C., Rybicki, K. J., Wallach, J. J., & Mitchell, J. H. (1983). Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. Journal of Applied Physiology, 55, 105–112.PubMedGoogle Scholar
  63. Khalsa, S. S., Rudrauf, D., Feinstein, J. S., & Tranel, D. (2009). The pathways of interoceptive awareness. Nature Neuroscience, 12, 1494–1496.PubMedCentralPubMedGoogle Scholar
  64. Kirsch, W., & Kunde, W. (2013). Visual near space is scaled to parameters of current action plans. Journal of Experimental Psychology: Human Perception and Performance, 39, 1313–1325.PubMedGoogle Scholar
  65. Kirsch, W., Herbort, O., Butz, M. V., & Kunde, W. (2012). Influence of motor planning on distance perception within peripersonal space. PLoS ONE, 7, e34880. doi: 10.1371/journal.pone.0034880 PubMedCentralPubMedGoogle Scholar
  66. Kniffeki, K. D., Mense, S., & Schmidt, R. F. (1981). Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circulation Research, 48, I-25–I-31.Google Scholar
  67. Konczak, J., Meeuwsen, H. J., & Cress, M. E. (1992). Changing affordances in stair climbing: The perception of maximum climbability in young and older adults. Journal of Experimental Psychology: Human Perception and Performance, 18, 691–697. doi: 10.1037/0096-1523.18.3.691 PubMedGoogle Scholar
  68. Kwon, T., & Kim, T. (2012). The effect of skill level on perceptual judgment. European Journal of Scientific Research, 91, 184–187.Google Scholar
  69. Lee, D. N. (1974). Visual information during locomotion. In R. B. McLeod & H. L. Pick (Eds.), Studies in perception: Essays in honor of J. J. Gibson (pp. 250–267). Ithaca: Cornell University Press.Google Scholar
  70. Lee, D. N. (1978). The function of vision. In H. Pick & E. Saltzman (Eds.), Modes of perceiving and processing information (pp. 159–170). Hillsdale: Erlbaum.Google Scholar
  71. Lee, D. N. (1980). Visuo-motor coordination in spacetime. In G. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 281–295). Amsterdam: North-Holland.Google Scholar
  72. Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants. Perception & Psychophysics, 15, 529–532.Google Scholar
  73. Lee, D. N., & Lishman, J. R. (1975). Visual proprioceptive control of stance. Journal of Human Movement Studies, 1, 87–95.Google Scholar
  74. Lee, Y., Lee, S., Carello, C., & Turvey, M. T. (2012). An archer’s perceived form scales the “hitableness” of archery targets. Journal of Experimental Psychology: Human Perception and Performance, 38, 1125–1131.PubMedGoogle Scholar
  75. Lessard, D. A., Linkenauger, S. A., & Proffitt, D. R. (2009). Look before you leap: Jumping ability affects distance perception. Perception, 38, 1863–1866.PubMedCentralPubMedGoogle Scholar
  76. Linkenauger, S. A., Witt, J. K., Bakdash, J. Z., Stefanucci, J. K., & Proffitt, D. R. (2009a). Asymmetrical body perception: A possible role for neural body representations. Psychological Science, 20, 1373–1380.PubMedCentralPubMedGoogle Scholar
  77. Linkenauger, S. A., Witt, J. K., Stefanucci, J. K., Bakdash, J. Z., & Proffitt, D. R. (2009b). The effects of handedness and reachability on perceived distance. Journal of Experimental Psychology: Human Perception and Performance, 35, 1649–1660.PubMedCentralPubMedGoogle Scholar
  78. Linkenauger, S. A., Ramenzoni, V. C., & Proffitt, D. R. (2010). Illusory shrinkage and growth: Body-based rescaling affects the perception of size. Psychological Science, 21, 1318–1325.PubMedCentralPubMedGoogle Scholar
  79. Linkenauger, S. A., Witt, J. K., & Proffitt, D. R. (2011). Taking a hands-on approach: Apparent grasping ability scales the perception of object size. Journal of Experimental Psychology: Human Perception and Performance, 37, 1432–1441.PubMedGoogle Scholar
  80. Linkenauger, S. A., Leyrer, M., Bülthoff, H. H., & Mohler, B. J. (2013). Welcome to wonderland: The influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects. PLoS ONE, 8, e68594. doi: 10.1371/journal.pone.0068594 PubMedCentralPubMedGoogle Scholar
  81. Lo, C. R., & Johnston, D. W. (1984a). Cardiovascular feedback control during dynamic exercise. Psychophysiology, 21, 199–206.PubMedGoogle Scholar
  82. Lo, C. R., & Johnston, D. W. (1984b). The effect of the cardiovascular response to exercise using feedback of the product of interbeat interval and pulse transit time. Psychosomatic Medicine, 46, 115–125.PubMedGoogle Scholar
  83. Mantel, B., Bardy, B. G., & Stoffregen, T. A. (2010). Locomotor assessment of whether an object is reachable. Ecological Psychology, 22, 192–211.Google Scholar
  84. Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8, 79–86.PubMedGoogle Scholar
  85. Mark, L. S. (1987). Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13, 361–370. doi: 10.1037/0096-1523.13.3.361 PubMedGoogle Scholar
  86. Mark, L. S., Jiang, Y., King, S. S., & Paasche, J. (1999). The impact of visual exploration on judgments of whether a gap is crossable. Journal of Experimental Psychology: Human Perception and Performance, 25, 287–295. doi: 10.1037/0096-1523.25.1.287 PubMedGoogle Scholar
  87. Matthias, E., Schandry, R., Duschek, S., & Pollatos, O. (2009). On the relationship between interoceptive awareness and the attentional processing of visual stimuli. International Journal of Psychophysiology, 72, 154–159.PubMedGoogle Scholar
  88. McArdle, W., Katch, F., & Katch, V. (2008). Exercise physiology: Nutrition, energy, and human performance (7th ed.). Baltimore: Lippincott Williams & Wilkins.Google Scholar
  89. McCloskey, D. I., & Mitchell, J. H. (1972). Reflex cardiovascular and respiratory responses originating in exercising muscle. Journal of Physiology, 224, 173–186.PubMedCentralPubMedGoogle Scholar
  90. McCord, J. L., Tsuchimochi, H., & Kaufman, M. P. (2009). Acid-sensing ion channels contribute to the metaboreceptor component of the exercise pressor reflex. American Journal of Physiology. Heart and Circulatory Physiology, 297, 443–449.Google Scholar
  91. McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voice. Nature, 264, 746–748. doi: 10.1038/264746a0 PubMedGoogle Scholar
  92. Mehling, W. E., Price, C., Daubenmier, J. J., Acree, M., Bartmess, E., & Stewart, A. (2012). The multidimensional assessment of interoceptive awareness (MAIA). PLoS ONE, 7, e48230. doi: 10.1371/journal.pone.0048230 PubMedCentralPubMedGoogle Scholar
  93. Mense, S., & Stahnke, M. (1983). Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. Journal of Physiology, 342, 383–397.PubMedCentralPubMedGoogle Scholar
  94. Michaels, C. F., & Carello, C. (1981). Direct perception. Englewood Cliffs: Prentice Hall.Google Scholar
  95. Michaels, C. F., & Isenhower, R. W. (2011). Information space is action space: Perceiving the partial lengths of rods rotated on an axle. Attention, Perception, & Psychophysics, 73, 160–171. doi: 10.3758/s13414-010-0024-3 Google Scholar
  96. Mitchell, J. H., Kaufman, M. P., & Iwamoto, G. A. (1983). The exercise pressor reflex: Its cardiovascular effects, afferent mechanisms, and central pathways. Annual Review of Physiology, 45, 229–242.PubMedGoogle Scholar
  97. Montgomery, W. A., & Jones, G. E. (1984). Laterality, emotionality, and heartbeat perception. Psychophysiology, 21, 459–465.PubMedGoogle Scholar
  98. Morgado, N., Gentaz, E., Guinet, E., Osiurak, F., & Palluel-Germain, R. (2013). Within reach but not so reachable: Obstacles matter in visual perception of distances. Psychonomic Bulletin & Review, 20, 462–467. doi: 10.3758/s13423-012-0358-z Google Scholar
  99. Nurse, C. A. (2010). Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Experimental Physiology, 95, 657–667.PubMedGoogle Scholar
  100. Osiurak, F., Morgado, N., & Palluel-Germain, R. (2012). Tool use and perceived distance: When unreachable becomes spontaneously reachable. Experimental Brain Research, 218, 331–339. doi: 10.1007/s00221-012-3036-5 PubMedGoogle Scholar
  101. Pan, J. S., Coats, R. O., & Bingham, G. P. (2014). Calibration is action specific but perturbation of perceptual units is not. Journal of Experimental Psychology: Human Perception and Performance, 40, 404–415. doi: 10.1037/a0033795 PubMedGoogle Scholar
  102. Pennebaker, J. W., & Lightner, J. M. (1980). Competition of internal and external information in an exercise setting. Journal of Personality and Social Psychology, 39, 165–174.PubMedGoogle Scholar
  103. Perski, A., & Engel, B. T. (1980). The role of behavioral conditioning in the cardiovascular response to exercise. Biofeedback and Self Regulation, 5, 91–104.PubMedGoogle Scholar
  104. Pollatos, O., & Schandry, R. (2004). Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology, 41, 476–482.PubMedGoogle Scholar
  105. Pollatos, O., Kurz, A., Albrecht, J., Schreder, T., Kleeman, A. M., Schopf, V., & Schandry, R. (2008). Reduced perception of bodily signals in anorexia nervosa. Eating Behaviors, 9, 381–388.PubMedGoogle Scholar
  106. Prabhakar, N. R. (2006). O2 sensing at the mammalian carotid body: Why multiple O2 sensors and multiple transmitters? Experimental Physiology, 91, 17–23.PubMedGoogle Scholar
  107. Prabhakar, N. R. (2013). Sensing hypoxia: Physiology, genetics and epigenetics. Journal of Physiology, 591, 2245–2257.PubMedCentralPubMedGoogle Scholar
  108. Prabhakar, N. R., & Peng, Y.-J. (2004). Peripheral chemoreceptors in health and disease. Journal of Applied Physiology, 96, 359–366.PubMedGoogle Scholar
  109. Proffitt, D. R. (2006). Embodied perception and the economy of action. Perspectives on Psychological Science, 1, 110–122. doi: 10.1111/j.1745-6916.2006.00008.x Google Scholar
  110. Proffitt, D. R., & Linkenauger, S. A. (2013). Perception viewed as a phenotypic expression. In W. Prinz, M. Beisert, & A. Herwig (Eds.), Action science: Foundations of an emerging discipline (pp. 171–198). Cambridge: MIT Press.Google Scholar
  111. Proffitt, D. R., Bhalla, M., Gossweiler, R., & Midgett, J. (1995). Perceiving geographical slant. Psychonomic Bulletin & Review, 2, 409–428. doi: 10.3758/BF03210980 Google Scholar
  112. Proffitt, D. R., Stefanucci, J., Banton, T., & Epstein, W. (2003). The role of effort in distance perception. Psychological Science, 14, 106–112.PubMedGoogle Scholar
  113. Ramenzoni, V. C., Riley, M. A., Shockley, K., & Davis, T. (2008). Carrying the height of the world on your ankles: Encumbering observers reduce their estimates of how high another actor can jump. Quarterly Journal of Experimental Psychology, 61, 1487–1495.Google Scholar
  114. Razran, G. (1961). The observable unconscious and the inferable conscious in current Soviet psychophysiology: Interoceptive conditioning, semantic conditioning, and the orienting reflex. Psychological Review, 68, 81–147.Google Scholar
  115. Richardson, M. J., Shockley, K., Fajen, B. R., Riley, M. A., & Turvey, M. T. (2008). Ecological psychology: Six principles for an embodied-embedded approach to behavior. In P. Calvo & T. Gomia (Eds.), Handbook of cognitive science: An embodied approach (pp. 161–187). Amsterdam: Elsevier.Google Scholar
  116. Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception and Performance, 21, 480–497. doi: 10.1037/0096-1523.21.3.480 PubMedGoogle Scholar
  117. Riley, M. A., Wagman, J. B., Santana, M.-V., Carello, C., & Turvey, M. T. (2002). Perceptual behavior: Recurrence analysis of a haptic exploratory procedure. Perception, 31, 481–510.PubMedGoogle Scholar
  118. Rock, I. (1983). The logic of perception. Cambridge: MIT Press.Google Scholar
  119. Schandry, R., & Bestler, M. (1995). The association between parameters of cardiovascular function and heartbeat perception. In D. Vaitl & R. Schandry (Eds.), From the heart to the brain (pp. 105–120). Frankfurt am Main: Peter Lang.Google Scholar
  120. Schandry, R., & Weitkunat, R. (1990). Enhancement of heartbeat-related brain potentials through cardiac awareness training. International Journal of Neuroscience, 53, 243–253.PubMedGoogle Scholar
  121. Schandry, R., Bestler, M., & Montoya, P. (1993). On the relation between cardiodynamics and heartbeat perception. Psychophysiology, 30, 467–474.PubMedGoogle Scholar
  122. Schnall, S., Zadra, J. R., & Proffitt, D. R. (2010). Direct evidence for the economy of action: Glucose and the perception of geographical slant. Perception, 39, 464–482. doi: 10.1068/p6445 PubMedCentralPubMedGoogle Scholar
  123. Sedgwick, H. A. (1973). The visible horizon: A potential source of visual information for the perception of size and distance. Unpublished doctoral dissertation, Cornell University, Ithaca, New York.Google Scholar
  124. Sedgwick, H. A. (1980). The geometry of spatial layout in pictorial representation. In M. Hagen (Ed.), The perception of pictures VI (pp. 33–90). New York: Academic Press.Google Scholar
  125. Sedgwick, H. (1986). Space perception. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance (Vol. 1, pp. 1–57). New York: Wiley.Google Scholar
  126. Shaw, R. E., & McIntyre, M. (1974). Algoristic foundations to cognitive psychology. In W. Weimer & D. Palermo (Eds.), Cognition and the symbolic processes (pp. 305–362). Hillsdale: Erlbaum.Google Scholar
  127. Shaw, R. E., Turvey, M. T., & Mace, W. M. (1982). Ecological psychology: The consequence of a commitment to realism. In W. Weimer & D. Palermo (Eds.), Cognition and the symbolic processes (Vol. 2, pp. 159–226). Hillsdale: Erlbaum.Google Scholar
  128. Sherrington, C. S. (1906). The integrative action of the nervous system. New Haven: Yale University Press.Google Scholar
  129. Sparrow, W. A., & Newell, K. M. (1998). Metabolic energy expenditure and the regulation of movement economy. Psychonomic Bulletin & Review, 5, 173–196. doi: 10.3758/BF03212943 Google Scholar
  130. Stefanucci, J. K., & Geuss, M. N. (2009). Big people, little world: The body influences size perception. Perception, 38, 1782–1795. doi: 10.1068/p6437 PubMedCentralPubMedGoogle Scholar
  131. Stefanucci, J. K., Proffitt, D. R., Banton, T., & Epstein, W. (2005). Distances appear different on hills. Perception & Psychophysics, 67, 1052–1060.Google Scholar
  132. Stoffregen, T. A., & Bardy, B. G. (2001). On specification and the senses. Behavioral and Brain Sciences, 24, 195–261.PubMedGoogle Scholar
  133. Stoffregen, T. A., Yang, C.-H., & Bardy, B. G. (2005). Affordance judgments and nonlocomotor body movement. Ecological Psychology, 17, 74–104.Google Scholar
  134. Sugovic, M. (2013). Perception and obesity: The effect of actual body size and beliefs about body size on perception of the environment. Unpublished doctoral dissertation, Purdue University, West Lafayette, IN.Google Scholar
  135. Sugovic, M., & Witt, J. K. (2013). An older view of distance perception: Older adults perceive walkable extents as farther. Experimental Brain Research, 226, 383–391.PubMedGoogle Scholar
  136. Taylor, J. E. T., Witt, J. K., & Sugovic, M. (2011). When walls are no longer barriers: Perception of wall height in parkour. Perception, 40, 757–760.PubMedGoogle Scholar
  137. Tsakiris, M., Hesse, M., Boy, C., Haggard, P., & Fink, G. R. (2007). Neural correlates of body-ownership: A sensory network for bodily self-consciousness. Cerebral Cortex, 17, 2235–2244.PubMedGoogle Scholar
  138. Tsakiris, M., Tajadura-Jiménez, A., & Costantini, M. (2011). Just a heartbeat away from one's body: Interoceptive sensitivity predicts malleability of body-representations. Proceedings of the Royal Society B, 278, 2470–2476. doi: 10.1098/rspb.2010.2547 PubMedCentralPubMedGoogle Scholar
  139. Turvey, M. T., Shaw, R. E., Reed, E. S., & Mace, W. M. (1981). Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition, 9, 237–304.PubMedGoogle Scholar
  140. Turvey, M. T., Carello, C., & Kim, N.-G. (1990). Links between active perception and the control of action. In H. Haken & M. Stadler (Eds.), Synergetics of cognition (pp. 269–295). Berlin: Springer.Google Scholar
  141. van der Hoort, B., Guterstam, A., & Ehrsson, H. H. (2011). Being Barbie: The size of one’s own body determines the perceived size of the world. PLoS ONE, 6, e20195. doi: 10.1371/journal.pone.0020195 PubMedCentralPubMedGoogle Scholar
  142. Vasey, M. W., Vilensky, M. R., Heath, J. H., Harbaugh, C. N., Buffington, A. G., & Fazio, R. H. (2012). It was as big as my head, I swear! Biased spider size estimation in spider phobia. Journal of Anxiety Disorders, 26, 20–24. doi: 10.1016/j.janxdis.2011.08.009 PubMedCentralPubMedGoogle Scholar
  143. von Helmholtz, H. (2001). Concerning the perceptions in general. In S. Yantis (Ed.), Visual perception (pp. 24–44). Philadelphia: Psychology Press. Original work published 1925.Google Scholar
  144. Wagman, J. B., & Malek, E. A. (2009). Geometric, kinetic–kinematic, and intentional constraints influence willingness to pass under a barrier. Experimental Psychology, 56, 409–417.PubMedGoogle Scholar
  145. Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10, 683–703. doi: 10.1037/0096-1523.10.5.683 PubMedGoogle Scholar
  146. Warren, W. H., Jr., & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13, 371–383. doi: 10.1037/0096-1523.13.3.371 PubMedGoogle Scholar
  147. Werner, N. S., Jung, K., Duschek, S., & Schandry, R. (2009). Enhanced cardian perception is associated with benefits in decision-making. Psychophysiology, 46, 1123–1129.PubMedGoogle Scholar
  148. White, E. J. (2012). The role of multimodally specified effort in action-relevant distance perception. Unpublished doctoral dissertation, University of Cincinnati, Cincinnati, OH.Google Scholar
  149. White, E., Shockley, K., & Riley, M. A. (2013). Multimodally specified energy expenditure and action-based distance judgments. Psychonomic Bulletin & Review, 20, 1371–1377. doi: 10.3758/s13423-013-0462-8 Google Scholar
  150. Williams, J. W., McColl, R., Mathews, D., Ginsburg, M., & Mitchell, J. H. (1999). Activation of the insular cortex is affected by the intensity of exercise. Journal of Applied Physiology, 87, 1213–1219.Google Scholar
  151. Williamson, J. W., McColl, R., Mathews, D., Mitchell, J. H., Raven, P. B., & Morgan, W. P. (2001). Hypnotic manipulation of effort sense during dynamic exercise: Cardiovascular responses and brain activation. Journal of Applied Physiology, 90, 1392–1399.PubMedGoogle Scholar
  152. Wilson, L. B., Andrew, D., & Craig, A. D. (2002). Activation of spinobulbar lamina I neurons by static muscle contraction. Journal of Neurophysiology, 87, 1641–1645.PubMedGoogle Scholar
  153. Witt, J. K. (2011a). Action’s effect on perception. Current Directions in Psychological Science, 20, 201–206.Google Scholar
  154. Witt, J. K. (2011b). Tool use influences perceived shape and parallelism: Indirect measures of perceived distance. Journal of Experimental Psychology: Human Perception and Performance, 37, 1148–1156.PubMedGoogle Scholar
  155. Witt, J. K., & Dorsch, T. (2009). Kicking to bigger uprights: Field goal kicking performance influences perceived size. Perception, 38, 1328–1340.PubMedGoogle Scholar
  156. Witt, J. K., & Proffitt, D. R. (2005). See the ball, hit the ball: Apparent ball size is correlated with batting average. Psychological Science, 16, 937–938.PubMedGoogle Scholar
  157. Witt, J. K., & Proffitt, D. R. (2008). Action-specific influences on distance perception: A role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance, 34, 1479–1492. doi: 10.1037/a0010781 PubMedCentralPubMedGoogle Scholar
  158. Witt, J. K., & Sugovic, M. (2010). Performance and ease influence perceived speed. Perception, 39, 1341–1353.PubMedGoogle Scholar
  159. Witt, J. K., & Sugovic, M. (2012). Does ease to block a ball affect perceived ball speed? Examination of alternative hypotheses. Journal of Experimental Psychology: Human Perception and Performance, 38, 1202–1214. doi: 10.1037/a0026512 PubMedGoogle Scholar
  160. Witt, J. K., & Sugovic, M. (2013a). Catching ease influences perceived speed: Evidence for action-specific effects from action-based measures. Psychonomic Bulletin & Review, 20, 1364–1370. doi: 10.3758/s13423-013-0448-6 Google Scholar
  161. Witt, J. K., & Sugovic, M. (2013b). Response bias cannot explain action-specific effects: Evidence from compliant and non-compliant participants. Perception, 42, 138–152. doi: 10.1068/p7367 PubMedGoogle Scholar
  162. Witt, J. K., & Sugovic, M. (2013c). Spiders appear to move faster than non-threatening objects regardless of one’s ability to block them. Acta Psychologica, 143, 284–291. doi: 10.1016/j.actpsy.2013.04.011 PubMedGoogle Scholar
  163. Witt, J. K., Proffitt, D. R., & Epstein, W. (2004). Perceiving distance: A role of effort and intent. Perception, 33, 570–590.Google Scholar
  164. Witt, J. K., Proffitt, D. R., & Epstein, W. (2005). Tool use affects perceived distance but only when you intend to use it. Journal of Experimental Psychology: Human Perception and Performance, 31, 880–888. doi: 10.1037/0096-1523.31.5.880 PubMedGoogle Scholar
  165. Witt, J. K., Linkenauger, S. A., Bakdash, J. Z., & Proffitt, D. R. (2008). Putting to a bigger hole: Golf performance relates to perceived size. Psychonomic Bulletin & Review, 15, 581–585. doi: 10.3758/PBR.15.3.581 Google Scholar
  166. Witt, J. K., Proffitt, D. R., & Epstein, W. (2010). How and when does action scale perception? Journal of Experimental Psychology: Human Perception and Performance, 36, 1153–1160. doi: 10.1037/a0019947 PubMedGoogle Scholar
  167. Witt, J. K., Schuck, D. M., & Taylor, J. E. T. (2011). Action-specific effects underwater. Perception, 40, 530–537. doi: 10.1068/P6910 PubMedGoogle Scholar
  168. Woods, A. J., Philbeck, J. W., & Danoff, J. V. (2009). The various perceptions of distance: An alternative view of how effort affects distance judgments. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1104–1117. doi: 10.1037/a0013622 Google Scholar
  169. Yu, Y., Bardy, B. G., & Stoffregen, T. A. (2011). Influences of head and torso movement before and during affordance perception. Journal of Motor Behavior, 43, 45–54.PubMedGoogle Scholar
  170. Zhu, Q., & Bingham, G. P. (2009). Investigating the information used to detect an affordance for maximum distance throws. In J. Wagman & C. Pagano (Eds.), Studies in perception–action X (pp. 122–126). Hillsdale: Erlbaum.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of PsychologyColorado State UniversityFort CollinsUSA
  2. 2.Center for Cognition, Action, & PerceptionUniversity of CincinnatiCincinnatiUSA

Personalised recommendations