Psychonomic Bulletin & Review

, Volume 21, Issue 6, pp 1452–1458 | Cite as

The nature of altered vision near the hands: Evidence for the magnocellular enhancement account from object correspondence through occlusion

Brief Report


A growing body of evidence indicates that the perception of visual stimuli is altered when they occur near the observer’s hands, relative to other locations in space (see Brockmole, Davoli, Abrams, & Witt, 2013, for a review). Several accounts have been offered to explain the pattern of performance across different tasks. These have typically focused on attentional explanations (attentional prioritization and detailed attentional evaluation of stimuli in near-hand space), but more recently, it has been suggested that near-hand space enjoys enhanced magnocellular (M) input. Here we differentiate between the attentional and M-cell accounts, via a task that probes the roles of position consistency and color consistency in determining dynamic object correspondence through occlusion. We found that placing the hands near the visual display made observers use only position consistency, and not color, in determining object correspondence through occlusion, which is consistent with the fact that M cells are relatively insensitive to color. In contrast, placing observers’ hands far from the stimuli allowed both color and position contribute. This provides evidence in favor of the M-cell enhancement account of altered vision near the hands.


Object correspondence Attention Embodied cognition Magnocellular Perihand space 


Author note

This research was supported by an Australian Research Council (ARC) Discovery Early Career Research Award (DECRA) awarded to S.C.G. (No. DE140101734), and by an NSERC discovery grant awarded to J.P. The authors thank Peter Zhang and Erin Walsh for assistance with the data collection.


  1. Abrams, R. A., Davoli, C., Du, F., Knapp, W. H., & Paull, D. (2008). Altered vision near the hands. Cognition, 107, 1035–1047. doi: 10.1016/j.cognition.2007.09.006 PubMedCrossRefGoogle Scholar
  2. Abrams, R. A., & Weidler, B. J. (2013). Trade-offs in visual processing for stimuli near the hands. Attention, Perception, & Psychophysics. doi: 10.3758/s13414-013-0583-1
  3. Assad, J. A., & Maunsell, J. H. R. (1995). Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature, 373, 518–521. doi: 10.1038/373518a0 PubMedCrossRefGoogle Scholar
  4. Brockmole, J. R., Davoli, C., Abrams, R. A., & Witt, J. K. (2013). The world within reach: Effects of hand posture and tool use on visual cognition. Current Directions in Psychological Science, 22, 38–44. doi: 10.1177/0963721412465065 CrossRefGoogle Scholar
  5. Burke, L. (1952). On the tunnel effect. Quarterly Journal of Experimental Psychology, 4, 121–138. doi: 10.1080/17470215208416611 CrossRefGoogle Scholar
  6. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorial in Quantitative Methods for Psychology, 1, 42–45.Google Scholar
  7. Davoli, C. C., Du, F., Montana, J., Gaverick, S., & Abrams, R. A. (2010). When meaning matters, look but don’t touch: The effects of posture on reading. Memory & Cognition, 38, 555–562. doi: 10.3758/MC.38.5.555 CrossRefGoogle Scholar
  8. Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in the lateral geniculate nucleus of the macaque. Journal of Physiology, 357, 219–240.PubMedCentralPubMedGoogle Scholar
  9. Dux, P. E., & Marois, R. (2009). How humans search for targets through time: A review of data and theory from the attentional blink. Attention, Perception, & Psychophysics, 71, 1683–1700. doi: 10.3758/APP.71.8.1683 CrossRefGoogle Scholar
  10. Dux, P. E., Visser, T. A. W., Goodhew, S. C., & Lipp, O. V. (2010). Delayed re-entrant processing impairs visual awareness: An object substitution masking study. Psychological Science, 21, 1242–1247. doi: 10.1177/0956797610379866 PubMedCrossRefGoogle Scholar
  11. Goodale, M. A., & Westwood, D. A. (2004). An evolving view of duplex vision: Separate but interacting cortical pathways for perception and action. Current Opinion in Neurobiology, 14, 203–211. doi: 10.1016/j.conb.2004.03.002 PubMedCrossRefGoogle Scholar
  12. Goodhew, S. C., Boal, H. L., & Edwards, M. (2014). A magnocellular contribution to conscious perception via temporal object segmentation. Journal of Experimental Psychology: Human Perception and Performance. doi: 10.1037/a0035769
  13. Goodhew, S. C., Gozli, D. G., Ferber, S., & Pratt, J. (2013a). Reduced temporal fusion in near-hand space. Psychological Science, 24, 891–900. doi: 10.1177/0956797612463402 PubMedCrossRefGoogle Scholar
  14. Goodhew, S. C., Pratt, J., Dux, P. E., & Ferber, S. (2013b). Substituting objects from consciousness: A review of object substitution masking. Psychonomic Bulletin & Review, 20, 859–877. doi: 10.3758/s13423-013-0400-9 CrossRefGoogle Scholar
  15. Gozli, D. G., West, G. L., & Pratt, J. (2012). Hand position alters vision by biasing processing through different visual pathways. Cognition, 124, 244–250. doi: 10.1016/j.cognition.2012.04.008 PubMedCrossRefGoogle Scholar
  16. Hein, E., & Moore, C. M. (2012). Spatio-temporal priority revisited: The role of feature identity and similarity for object correspondence in apparent motion. Journal of Experimental Psychology: Human Perception and Performance, 38, 975–988. doi: 10.1037/a0028197 PubMedGoogle Scholar
  17. Hollingworth, A., & Franconeri, S. L. (2009). Object correspondence across brief occlusion is established on the basis of both spatiotemporal and surface feature cues. Cognition, 113, 150–166. doi: 10.1016/j.cognition.2009.08.004 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short-term memory: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General, 137, 163–181. doi: 10.1037/0096-3445.137.1.163 CrossRefGoogle Scholar
  19. Legge, G. E. (1978). Sustained and transient mechanisms in human vision: Temporal and spatial properties. Vision Research, 18, 69–81. doi: 10.1016/0042-6989%2878%2990079-2 PubMedCrossRefGoogle Scholar
  20. Matin, E. (1974). Saccadic suppression: A review and an analysis. Psychological Bulletin, 81, 899–917. doi: 10.1037/h0037368 PubMedCrossRefGoogle Scholar
  21. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X (pp. 531–556). Hillsdale: Erlbaum.Google Scholar
  22. Reed, C., Betz, R., Garza, J. P., & Roberts, R. J. (2010). Grab it! Biased attention in functional hand and tool space. Attention, Perception, & Psychophysics, 72, 236–245. doi: 10.3758/APP.72.1.236 CrossRefGoogle Scholar
  23. Reed, C., Grubb, J., & Steele, C. (2006). Hands up: Attentional prioritization of space near the hand. Journal of Experimental Psychology: Human Perception and Performance, 32, 166–177. doi: 10.1037/0096-1523.32.1.166 PubMedGoogle Scholar
  24. Richard, A. M., Luck, S. J., & Hollingworth, A. (2008). Establishing object correspondence across eye movements: Flexible use of spatiotemporal and surface information. Cognition, 109, 66–88. doi: 10.1016/j.cognition.2008.07.004 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Tseng, P., & Bridgeman, B. (2011). Improved change detection with nearby hands. Experimental Brain Research, 209, 257–269. doi: 10.1007/s00221-011-2544-z PubMedCentralPubMedCrossRefGoogle Scholar
  26. Weidler, B. J., & Abrams, R. A. (2013). Hand proximity—not arm posture—alters vision near the hands. Attention, Perception, & Psychophysics, 75, 650–653. doi: 10.3758/s13414-013-0456-7 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Stephanie C. Goodhew
    • 1
  • Nicole Fogel
    • 2
  • Jay Pratt
    • 2
  1. 1.Research School of PsychologyBuilding 39 The Australian National UniversityCanberraAustralia
  2. 2.Department of PsychologyUniversity of TorontoTorontoCanada

Personalised recommendations