Psychonomic Bulletin & Review

, Volume 21, Issue 4, pp 995–1002 | Cite as

Touching on face space: Comparing visual and haptic processing of face shapes

Brief Report

Abstract

The idea that faces are represented within a structured face space (Valentine Quarterly Journal of Experimental Psychology 43: 161–204, 1991) has gained considerable experimental support, from both physiological and perceptual studies. Recent work has also shown that faces can even be recognized haptically—that is, from touch alone. Although some evidence favors congruent processing strategies in the visual and haptic processing of faces, the question of how similar the two modalities are in terms of face processing remains open. Here, this question was addressed by asking whether there is evidence for a haptic face space, and if so, how it compares to visual face space. For this, a physical face space was created, consisting of six laser-scanned individual faces, their morphed average, 50 %-morphs between two individual faces, as well as 50 %-morphs of the individual faces with the average, resulting in a set of 19 faces. Participants then rated either the visual or haptic pairwise similarity of the tangible 3-D face shapes. Multidimensional scaling analyses showed that both modalities extracted perceptual spaces that conformed to critical predictions of the face space framework, hence providing support for similar processing of complex face shapes in haptics and vision. Despite the overall similarities, however, systematic differences also emerged between the visual and haptic data. These differences are discussed in the context of face processing and complex-shape processing in vision and haptics.

Keywords

Face perception Modality effects Face space Vision Haptics 

Notes

Author note

This research was supported by the WCU (World Class University) program through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education, Science and Technology (Award No. R31-2008-000-10008-0); by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Science, ICT & Future Planning (Award No. NRF-2013R1A1A1011768); and by the Brain Korea 21 PLUS Program through the National Research Foundation of Korea, funded by the Ministry of Education. The author gratefully acknowledges the support of Heinrich Bülthoff and Bianca Arsene for this study.

References

  1. Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (pp. 187–194). New York, NY: ACM Press.CrossRefGoogle Scholar
  2. Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory and applications. New York, NY: Springer.Google Scholar
  3. Busey, T. A. (1998). Physical and psychological representations of faces: Evidence from morphing. Psychological Science, 9, 476–483.CrossRefGoogle Scholar
  4. Byatt, G., & Rhodes, G. (2004). Identification of own-race and other-race faces: Implications for the representation of race in face space. Psychonomic Bulletin & Review, 11, 735–741. doi:10.3758/BF03196628 CrossRefGoogle Scholar
  5. Casey, S. J., & Newell, F. N. (2007). Are representations of unfamiliar faces independent of encoding modality? Neuropsychologia, 45, 506–513.PubMedCrossRefGoogle Scholar
  6. Cooke, T., Jäkel, F., Wallraven, C., & Bülthoff, H. H. (2007). Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia, 45, 484–495. doi:10.1016/j.neuropsychologia.2006.02.009 PubMedCrossRefGoogle Scholar
  7. Dopjans, L., Bülthoff, H. H., & Wallraven, C. (2012). Serial exploration of faces: Comparing vision and touch. Journal of Vision, 12(1), 6. doi:10.1167/12.1.6 PubMedCrossRefGoogle Scholar
  8. Dopjans, L., Wallraven, C., & Bülthoff, H. H. (2009). Cross-modal transfer in visual and haptic face recognition. IEEE Transactions on Haptics, 2, 236–240.CrossRefGoogle Scholar
  9. Gaissert, N., Wallraven, C., & Bülthoff, H. H. (2010). Visual and haptic perceptual spaces show high similarity in humans. Journal of Vision, 10(11), 2. doi:10.1167/10.11.2. 1–20.PubMedCrossRefGoogle Scholar
  10. Gao, X., & Wilson, H. R. (2013). The neural representation of face space dimensions. Neuropsychologia, 51, 1787–1793. doi:10.1016/j.neuropsychologia.2013.07.001 PubMedCrossRefGoogle Scholar
  11. Johnston, R., Milne, A., Williams, C., & Hosie, J. (1997). Do distinctive faces come from outer space? An investigation of the status of a multidimensional face-space. Visual Cognition, 4, 59–67.CrossRefGoogle Scholar
  12. Kilgour, A. R., de Gelder, B., & Lederman, S. J. (2004). Haptic face recognition and prosopagnosia. Neuropsychologia, 42, 707–712.PubMedCrossRefGoogle Scholar
  13. Kilgour, A. R., Kitada, R., Servos, P., James, T. W., & Lederman, S. J. (2005). Haptic face identification activates ventral occipital and temporal areas: An fMRI study. Brain and Cognition, 59, 246–257.PubMedCrossRefGoogle Scholar
  14. Kilgour, A. R., & Lederman, S. J. (2002). Face recognition by hand. Perception & Psychophysics, 64, 339–352.CrossRefGoogle Scholar
  15. Kilgour, A. R., & Lederman, S. J. (2006). A haptic face-inversion effect. Perception, 35, 921–931.PubMedCrossRefGoogle Scholar
  16. Kitada, R., Johnsrude, I. S., Kochiyama, T., & Lederman, S. J. (2009). Functional specialization and convergence in the occipito-temporal cortex supporting haptic and visual identification of human faces and body parts: An fMRI study. Journal of Cognitive Neuroscience, 21, 2027–2045.PubMedCrossRefGoogle Scholar
  17. Lacey, S., Tal, N., Amedi, A., & Sathian, K. (2009). A putative model of multisensory object representation. Brain Topography, 21, 269–274.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lederman, S. J., Klatzky, R. L., Abramowicz, A., Salsman, K., Kitada, R., & Hamilton, C. (2007). Haptic recognition of static and dynamic expressions of emotion in the live face. Psychological Science, 18, 158–164. doi:10.1111/j.1467-9280.2007.01866.x PubMedCrossRefGoogle Scholar
  19. Lee, H., & Wallraven, C. (2013). Exploiting object constancy: Effects of active exploration and shape morphing on similarity judgments of novel objects. Experimental Brain Research, 225, 277–289.PubMedCrossRefGoogle Scholar
  20. Leopold, D. A., Bondar, I. V., & Giese, M. A. (2006). Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature, 442, 572–575.PubMedCrossRefGoogle Scholar
  21. Leopold, D. A., O’Toole, A. J., Vetter, T., & Blanz, V. (2001). Prototype-referenced shape encoding revealed by high-level aftereffects. Nature Neuroscience, 4, 89–94. doi:10.1038/82947 PubMedCrossRefGoogle Scholar
  22. Loffler, G., Yourganov, G., Wilkinson, F., & Wilson, H. R. (2005). fMRI evidence for the neural representation of faces. Nature Neuroscience, 8, 1386–1391.PubMedCrossRefGoogle Scholar
  23. Matsumiya, K. (2013). Seeing a haptically explored face: Visual facial-expression aftereffect from haptic adaptation to a face. Psychological Science, 24, 2088–2098. doi:10.1177/0956797613486981 PubMedCrossRefGoogle Scholar
  24. McGugin, R. W., Gatenby, J. C., Gore, J. C., & Gauthier, I. (2012). High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance. Proceedings of the National Academy of Sciences, 109, 17063–17068.CrossRefGoogle Scholar
  25. McKone, E., Kanwisher, N., & Duchaine, B. C. (2007). Can generic expertise explain special processing for faces? Trends in Cognitive Sciences, 11, 8–15. doi:10.1016/j.tics.2006.11.002 PubMedCrossRefGoogle Scholar
  26. Newell, F. N., Ernst, M. O., Tjan, B. S., & Bülthoff, H. H. (2001). Viewpoint dependence in visual and haptic object recognition. Psychological Science, 12, 37–42. doi:10.1111/1467-9280.00307 PubMedCrossRefGoogle Scholar
  27. Nishimura, M., Maurer, D., & Gao, X. (2009). Exploring children’s face-space: A multidimensional scaling analysis of the mental representation of facial identity. Journal of Experimental Child Psychology, 103, 355–375.PubMedCrossRefGoogle Scholar
  28. Norman, J. F., & Bartholomew, A. N. (2011). Blindness enhances tactile acuity and haptic 3-D shape discrimination. Attention, Perception, & Psychophysics, 73, 2323–2331. doi:10.3758/s13414-011-0160-4 CrossRefGoogle Scholar
  29. Norman, J. F., Clayton, A. M., Norman, H. F., & Crabtree, C. E. (2008). Learning to perceive differences in solid shape through vision and touch. Perception, 37, 185–196. doi:10.1068/p5679 PubMedCrossRefGoogle Scholar
  30. Papesh, M. H., & Goldinger, S. D. (2010). A multidimensional scaling analysis of own-and cross-race face spaces. Cognition, 116, 283–288.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W.–. H. C., Cohen, L., & Haxby, J. V. (2004). Beyond sensory images: Object-based representation in the human ventral pathway. Proceedings of the National Academy of Sciences, 101, 5658–5663. doi:10.1073/pnas.0400707101 CrossRefGoogle Scholar
  32. Potter, T., Corneille, O., Ruys, K. I., & Rhodes, G. (2007). Just another pretty face: A multidimensional scaling approach to face attractiveness and variability. Psychonomic Bulletin & Review, 14, 368–372.CrossRefGoogle Scholar
  33. Ross, D. A., Deroche, M., & Palmeri, T. J. (2013). Not just the norm: Exemplar-based models also predict face aftereffects. Psychonomic Bulletin & Review. Advance online publication.. doi:10.3758/s13423-013-0449-5 Google Scholar
  34. Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 1317–1323. doi:10.1126/science.3629243 PubMedCrossRefGoogle Scholar
  35. Troje, N. F., & Bülthoff, H. H. (1996). Face recognition under varying poses: The role of texture and shape. Vision Research, 36, 1761–1771.PubMedCrossRefGoogle Scholar
  36. Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and race in face recognition. Quarterly Journal of Experimental Psychology, 43, 161–204.PubMedCrossRefGoogle Scholar
  37. Wallis, G. (2013). Toward a unified model of face and object recognition in the human visual system. Frontiers in Psychology, 4, 497. doi:10.3389/fpsyg.2013.00497 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Wallraven, C., & Dopjans, L. (2013). Visual experience is necessary for efficient haptic face recognition. NeuroReport, 24, 254–258.PubMedCrossRefGoogle Scholar
  39. Wallraven, C., Whittingstall, L., & Bülthoff, H. H. (2013). Learning to recognize face shapes through serial exploration. Experimental Brain Research, 226, 513–523.PubMedCrossRefGoogle Scholar
  40. Webster, M. A., Kaping, D., Mizokami, Y., & Duhamel, P. (2004). Adaptation to natural facial categories. Nature, 428, 557–561.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of Brain and Cognitive EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations