Psychonomic Bulletin & Review

, Volume 21, Issue 4, pp 907–934 | Cite as

ICAT: a computational model for the adaptive control of fixation durations

  • Hans A. Trukenbrod
  • Ralf Engbert
Theoretical Review


Eye movements depend on cognitive processes related to visual information processing. Much has been learned about the spatial selection of fixation locations, while the principles governing the temporal control (fixation durations) are less clear. Here, we review current theories for the control of fixation durations in tasks like visual search, scanning, scene perception, and reading and propose a new model for the control of fixation durations. We distinguish two local principles from one global principle of control. First, an autonomous saccade timer initiates saccades after random time intervals (local-I). Second, foveal inhibition permits immediate prolongation of fixation durations by ongoing processing (local-II). Third, saccade timing is adaptive, so that the mean timer value depends on task requirements and fixation history (Global). We demonstrate by numerical simulations that our model qualitatively reproduces patterns of mean fixation durations and fixation duration distributions observed in typical experiments. When combined with assumptions of saccade target selection and oculomotor control, the model accounts for both temporal and spatial aspects of eye movement control in two versions of a visual search task. We conclude that the model provides a promising framework for the control of fixation durations in saccadic tasks.


Computational modeling Eye movements Adaptive control Fixation duration 



We thank Casimir Ludwig and two anonymous reviewers for valuable comments on an earlier version of the manuscript and Petra Schienmann, as well as our student assistants, for their help during data collection. The research in this article was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) to R.E. (EN 471/1 and Research Group 868 “Computational Modeling of Behavioral, Cognitive, and Neural Dynamics”). C and MATLAB code of the model can be downloaded at the Potsdam Mind Research Repository (PMR 2;

Supplementary material

13423_2013_575_MOESM1_ESM.pdf (383 kb)
Online Resource 1 (ESM 383 kb)


  1. Becker, W., & Jürgens, R. (1979). An analysis of the saccadic system by means of double step stimuli. Vision Research, 19, 967–983.PubMedGoogle Scholar
  2. Becker, S. I., & Williams, M. (2011). Determinants of dwell time in visual search: Similarity or perceptual difficulty? PLoS ONE, 6(3), e17740.PubMedCentralPubMedGoogle Scholar
  3. Bichot, N. P., Rao, S. C., & Schall, J. D. (2001). Continuous processing in macaque frontal cortex during visual search. Neuropsychologia, 39(9), 972–982.PubMedGoogle Scholar
  4. Bohn, C., & Kliegl, R. (2007). Post-interpretive processes influence interpretive processing during reading: Evidence from eye movements. In S. Vosniadou, D. Kayser, & A. Protopapas (Eds.), Proceedings of the European Cognitive Science Conference 2007 (pp. 113–118). New York, NY: Lawrence Erlbaum Ass.Google Scholar
  5. Bouma, H., & de Voogd, A. H. (1974). On the control of eye saccades in reading. Vision Research, 14, 273–284.PubMedGoogle Scholar
  6. Bowers, A. R., & Reid, V. M. (1997). Eye movements and reading with simulated visual impairment. Ophthalmic & Physiological Optics, 17(5), 392–402.Google Scholar
  7. Carpenter, R. H. S. (1999). A neural mechanism that randomises behaviour. Journal of Consciousness Studies, 6(1), 13–22.Google Scholar
  8. Castelhano, M. S., & Henderson, J. M. (2008). Stable individual differences across images in human saccadic eye movements. Canadian Journal of Experimental Psychology, 62(1), 1–14.PubMedGoogle Scholar
  9. Castelhano, M. S., Mack, M. L., Henderson, J. M., (2009). Viewing task influences eye movement control during active scene perception. Journal of Vision 9(3):6. 1–15.Google Scholar
  10. Collier, G. L., & Ogden, R. T. (2004). Adding drift to the decomposition of simple isochronous tapping: An extension of the wing-kristofferson model. Journal of Experimental Psychology: Human Perception and Performance, 30(5), 853–872.PubMedGoogle Scholar
  11. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorial in Quantitative Methods for Psychology, 1(1), 42–45.Google Scholar
  12. De Graef, P., Christiaens, D., & d’Ydewalle, G. (1990). Perceptual effects of scene context on object identification. Psychological Research, 52(4), 317–329.PubMedGoogle Scholar
  13. Deubel, H., O’Regan, J. K., & Radach, R. (2000). Attention, information processing and eye movement control. In A. Kennedy, R. Radach, D. Heller, & J. Pynte (Eds.), Reading as a perceptual process (pp. 355–374). Oxford: Elsevier.Google Scholar
  14. Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word perception and eye movements during reading. Journal of Verbal Learning and Verbal Behavior, 20, 641–655.Google Scholar
  15. Drieghe, D. (2011). Parafoveal-on-foveal effects on eye movements during reading. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), The Oxford Handbook of Eye Movements (pp. 839–855). Oxford University Press: New York.Google Scholar
  16. Engbert, R., & Kliegl, R. (2001). Mathematical models of eye movements in reading: A possible role for autonomous saccades. Biological Cybernetics, 85, 77–87.PubMedGoogle Scholar
  17. Engbert, R., & Kliegl, R. (2011). Parallel graded attention models of reading. In S. P. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), The Oxford Handbook of Eye Movements (pp. 787–800). Oxford, UK: Oxford University Press.Google Scholar
  18. Engbert, R., & Krügel, A. (2010). Readers use bayesian estimation for eye movement control. Psychological Science, 21(3), 366–371.Google Scholar
  19. Engbert, R., Longtin, A., & Kliegl, R. (2002). A dynamical model of saccade generation in reading based on spatially distributed lexical processing. Vision Research, 42, 621–636.PubMedGoogle Scholar
  20. Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). SWIFT: A dynamical model of saccade generation during reading. Psychological Review, 112, 777–813.PubMedGoogle Scholar
  21. Feng, G., (2009). Time course and hazard function: Time course and hazard function: A distributional analysis of fixation duration in reading. Journal of Eye Movement Research 3(2) 3. 1–23.Google Scholar
  22. Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The psychology of looking and seeing. New York: Oxford University Press.Google Scholar
  23. Findlay, J. M., & Walker, R. (1999). A model of saccade generation based on parallel processing and competitive inhibition. Behavioral and Brain Sciences, 22, 661–721.PubMedGoogle Scholar
  24. Foxe, J. J., & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans. Experimental Brain Research, 142(1), 139–150.PubMedGoogle Scholar
  25. Friedman, A., & Liebelt, L. S. (1981). On the time course of viewing pictures with a view towards remembering. In D. F. Fisher, R. A. Monty, & J. W. Senders (Eds.), Eye movements: Cognition and visual perception (pp. 137–155). Hillsdale NJ: Lawrence Erlbaum.Google Scholar
  26. Gardiner, C. W. (1990). Handbook of stochastic methods. Berlin: Springer-Verlag.Google Scholar
  27. Gillespie, D. T. (1978). Monte Carlo simulation of random walks with residence time dependent transition probability rates. Journal of Computational Physics, 28, 395–407.Google Scholar
  28. Gould, J. D. (1973). Eye movements during visual search and memory search. Journal of Experimental Psychology, 98, 184–195.PubMedGoogle Scholar
  29. Gould, J. D., & Dill, A. B. (1969). Eye-movement parameters and pattern discrimination. Perception & Psychophysics, 6, 311–320.Google Scholar
  30. Greene, H. H., & Rayner, K. (2001). Eye-movement control in direction-coded visual search. Perception, 30, 147–157.PubMedGoogle Scholar
  31. Groner, M. T., Groner, R., & von Mühlenen, A. (2008). The effect of spatial frequency content on parameters of eye movements. Psychological Research, 72(6), 601–608.PubMedGoogle Scholar
  32. Harris, C. M., Hainline, L., Abramov, I., Lemerise, E., & Camenzuli, C. (1988). The distribution of fixation durations in infants and naive adults. Vision Research, 28(3), 419–432.PubMedGoogle Scholar
  33. Hayhoe, M. M., Bensinger, D. G., & Ballard, D. H. (1998). Task constraints in visual working memory. Vision Research, 38(1), 125–137.Google Scholar
  34. Henderson, J. M. (1992). Visual attention and eye movement control during reading and picture viewing. In K. Rayner (Ed.), Eye movements and visual cognition: Scene perception and reading (pp. 260–283). New York: Springer Verlag.Google Scholar
  35. Henderson, J. M. (2003). Human gaze control during real-world scene perception. Trends in Cognitive Sciences, 7, 498–504.PubMedGoogle Scholar
  36. Henderson, J. M., & Ferreira, F. (1990). Effects of foveal processing difficulty on the perceptual span in reading: Implications for attention and eye movement control. Journal of Experimental Psychology: Learning Memory and Cognition, 16, 417–429.Google Scholar
  37. Henderson, J. M., & Ferreira, F. (2004). Scene perception for psycholinguists. In: Henderson. In J. M. Henderson & F. Ferreira (Eds.), The interface of language, vision, & action (pp. 1–58). New York: Psychology Press.Google Scholar
  38. Henderson, J. M., & Hollingworth, A. (1998). Eye movements during scene viewing: an overview. In G. Underwood (Ed.), Eye guidance in reading and scene perception (pp. 269–294). Oxford: Elsevier.Google Scholar
  39. Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual Review of Psychology, 50(1), 243–271.Google Scholar
  40. Henderson, J. M., & Hollingworth, A. (2003). Eye movements and visual memory: Detecting changes to saccade targets in scenes. Perception & Psychophysics, 65(1), 58–71.Google Scholar
  41. Henderson, J. M., & Pierce, G. L. (2008). Eye movements during scene viewing: Evidence for mixed control of fixation durations. Psychonomic Bulletin and Review, 15(3), 566–573.PubMedGoogle Scholar
  42. Henderson, J. M., & Smith, T. J. (2009). How are eye fixation durations controlled during scene viewing? further evidence from a scene onset delay paradigm. Visual Cognition, 17(6–7), 1055–1082.Google Scholar
  43. Henderson, J. M., Weeks, P. A., Jr., & Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 25(1), 210–228.Google Scholar
  44. Henderson, J. M., Chanceaux, M., Smith, T. J., (2009). The influence of clutter on real-world scene search: Evidence from search efficiency and eye movements. Journal of Vision 9(1):32. 1–8.Google Scholar
  45. Hooge, I. T. C., & Erkelens, C. J. (1996). Control of fixation durations in a simple search task. Perception & Psychophysics, 58, 969–976.Google Scholar
  46. Hooge, I. T. C., & Erkelens, C. J. (1998). Adjustment of fixation duration in visual search. Vision Research, 38, 1295–1302.PubMedGoogle Scholar
  47. Hooge, I. T. C., & Erkelens, C. J. (1999). Peripheral vision and oculomotor control during visual search. Vision Research, 39, 1567–1575.PubMedGoogle Scholar
  48. Hooge, I. T. C., Vlaskamp, B. N. S., & Over, E. A. B. (2007). Saccadic search: on the duration of a fixation. In R. P. G. van Gompel, M. H. Fischer, W. S. Murray, & R. L. Hill (Eds.), Eye Movements: A Window on Mind and Brain (pp. 581–595). Oxford: Elsevier Science.Google Scholar
  49. Hyönä, J., & Niemi, P. (1990). Eye movements during repeated reading of a text. Acta Psychologica, 73(3), 259–280.PubMedGoogle Scholar
  50. Inhoff, A. W. (1984). Two stages of word processing during eye fixations in the reading of prose. Journal of Verbal Learning and Verbal Behavior, 23(5), 612–624.Google Scholar
  51. Inhoff, A. W., & Rayner, K. (1986). Parafoveal word processing during eye fixations in reading: Effects of word frequency. Perception & Psychophysics, 40(6), 431–439.Google Scholar
  52. Inhoff, A. W., Starr, M., & Shindler, K. L. (2000). Is the processing of words during eye fixations in reading strictly serial? Perception & Psychophysics, 62, 1474–1484.Google Scholar
  53. Ishida, T., & Ikeda, M. (1989). Temporal properties of information extraction in reading studied by a text-mask replacement technique. Journal of the Optical Society of America A, 6(10), 1624–1632.Google Scholar
  54. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203.Google Scholar
  55. Jacobs, A. M. (1986). Eye-movement control in visual search: How direct is visual span control. Perception & Psychophysics, 39(1), 47–58.Google Scholar
  56. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329–354.PubMedGoogle Scholar
  57. Just, M. A., & Carpenter, P. A. (1987). The psychology of reading and language comprehension. Boston, MA: Allyn and Bacon.Google Scholar
  58. Kennedy, A., Pynte, J., & Ducrot, S. (2002). Parafoveal-on-foveal interactions in word recognition. Quarterly Journal of Experimental Psychology, 55A, 1307–1337.Google Scholar
  59. Kennison, S. M., & Clifton, C. (1995). Determinants of parafoveal preview benefit in high and low working memory capacity readers: Implications for movement control. Journal of Experimental Psychology: Learning Memory and Cognition, 21, 68–81.Google Scholar
  60. Kienzle, W., Franz, M. O., Schölkopf, B., & Wichmann, F. A. (2009). Center-surround patterns emerge as optimal. Journal of Vision, 9(5):7, 1–15.Google Scholar
  61. Kliegl, R., & Engbert, R. (2005). Fixation durations before word skipping in reading. Psychonomic Bulletin & Review, 12(1), 132–138.Google Scholar
  62. Kliegl, R., Grabner, E., Rolfs, M., & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16, 262–284.Google Scholar
  63. Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the mind during reading: The influence of past, present, and future words on fixation durations. Journal of Experimental Psychology: General, 135, 12–35.Google Scholar
  64. Kolers, P. A. (1976). Buswell’s discoveries. In R. A. Monty & J. W. Senders (Eds.), Eye movements and psychological processes. Hillsdale, NJ: Erlbaum.Google Scholar
  65. Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–579.PubMedGoogle Scholar
  66. Laubrock, J., Cajar, A., Engbert, R., (2013). Control of fixation duration during scene viewing by interaction of foveal and peripheral processing. Journal of Vision 13(12):11. 1–20.Google Scholar
  67. Liversedge, S. P., Rayner, K., White, S. J., Vergilino-Perez, D., Findlay, J. M., & Kentridge, R. W. (2004). Eye movements when reading disappearing text: is there a gap effect in reading? Vision Research, 44(10), 1013–1024.PubMedGoogle Scholar
  68. Loftus, G. R. (1985). Picture perception: Effects of luminance on available information and information-extraction rate. Journal of Experimental Psychology: General, 114(3), 342–356.Google Scholar
  69. Loftus, G. R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 565–572.PubMedGoogle Scholar
  70. Loftus, G. R., Kaufman, L., Nishimoto, T., & Ruthruff, E. (1992). Effects of visual degradation on eye-fixation durations, perceptual processing, and long-term visual memory. In K. Rayner (Ed.), Eye movements and visual cognition: Scene perception and reading (pp. 203–226). New York: Springer Verlag.Google Scholar
  71. Mannan, S. K., Ruddock, K. H., & Wooding, D. S. (1995). Automatic control of saccadic eye movements made in visual inspection of briefly presented 2-D images. Spatial Vision, 9(3), 363–386.PubMedGoogle Scholar
  72. McConkie, G. W., & Rayner, K. (1975). The span of the effective stimulus during a fixation in reading. Perception & Psychophysics, 17, 578–586.Google Scholar
  73. McConkie, G. W., Zola, D., Grimes, J., Kerr, P. W., Bryant, N. R., & Wolff, P. M. (1991). Children’s eye movements during reading. In J. F. Stein (Ed.), Vision and visual dyslexia (pp. 251–262). London: Macmillan Press.Google Scholar
  74. Morrison, R. E. (1984). Manipulation of stimulus onset delay in reading: Evidence for parallel programming of saccades. Journal of Experimental Psychology: Human Perception and Performance, 10, 667–682.PubMedGoogle Scholar
  75. Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434(7031), 387–391.Google Scholar
  76. Näsänen, R., Ojanpää, H., & Kojo, I. (2001). Effect of stimulus contrast on performance and eye movements in visual search. Vision Research, 41(14), 1817–1824.PubMedGoogle Scholar
  77. Nuthmann, A., Smith, T. J., Engbert, R., & Henderson, J. M. (2010). CRISP: A computational model of fixation durations in scene viewing. Psychological Review, 117(2), 382–405.PubMedGoogle Scholar
  78. Poghosyan, V., & Ioannides, A. A. (2007). Precise mapping of early visual responses in space and time. NeuroImage, 35(2), 759–770.PubMedGoogle Scholar
  79. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.Google Scholar
  80. Rayner, K. (1975). The perceptual span and peripheral cues in reading. Cognitive Psychology, 7, 75–81.Google Scholar
  81. Rayner, K. (1977). Visual attention in reading: Eye movements reflect cognitive processes. Memory & Cognition, 5(4), 443–448.Google Scholar
  82. Rayner, K. (1995). Eye movements and cognitive processes in reading, visual search, and scene perception. In J. Findlay, R. Walker, & R. Kentridge (Eds.), Eye movement research (pp. 3–22). Amsterdam: Elsevier.Google Scholar
  83. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124, 372–422.PubMedGoogle Scholar
  84. Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62(8), 1457–1506.Google Scholar
  85. Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory & Cognition, 14, 191–201.Google Scholar
  86. Rayner, K., & McConkie, G. W. (1976). What guides a reader’s eye movements? Vision Research, 16, 829–837.PubMedGoogle Scholar
  87. Rayner, K., & Pollatsek, A. (1981). Eye movement control during reading: Evidence for direct control. The Quarterly Journal of Experimental Psychology Section A, 33(4), 351–373.Google Scholar
  88. Rayner, K., & Well, A. D. (1996). Effects of contextual constraint on eye movements in reading: A further examination. Psychonomic Bulletin & Review, 3(4), 504–509.Google Scholar
  89. Rayner, K., Sereno, S. C., & Raney, G. E. (1996). Eye movement control in reading: A comparison of two types of models. Journal of Experimental Psychology: Human Perception & Performance, 22(5), 1188–1200.Google Scholar
  90. Rayner, K., Slowiaczek, M. L., Clifton, C., & Bertera, J. H. (1983). Latency of sequential eye movements: Implications for reading. Journal of Experimental Psychology: Human Perception and Performance, 9(6), 912–922.PubMedGoogle Scholar
  91. Rayner, K., Liversedge, S. P., White, S. J., & Vergilino-Perez, D. (2003). Reading disappearing text: Cognitive control of eye movements. Psychological Science, 14(4), 385–388.PubMedGoogle Scholar
  92. Rayner, K., Liversedge, S. P., & White, S. J. (2006). Eye movements when reading disappearing text: The importance of the word to the right of fixation. Vision Research, 46(3), 310–323.PubMedGoogle Scholar
  93. Rayner, K., Li, X., Williams, C. C., Cave, K. R., & Well, A. D. (2007). Eye movements during information processing tasks: Individual differences and cultural effects. Vision Research, 47(21), 2714–2726.PubMedCentralPubMedGoogle Scholar
  94. Rayner, K., Yang, J., Castelhano, M. S., & Liversedge, S. P. (2011). Eye movements of older and younger readers when reading disappearing text. Psychology and Aging, 26(1), 214–223.PubMedGoogle Scholar
  95. Reichle, E. D., Pollatsek, A., Fisher, D. F., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105, 125–157.PubMedGoogle Scholar
  96. Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z Reader model of eye-movement control in reading: Comparisons to other models. Behavioral and Brain Sciences, 26, 445–526.PubMedGoogle Scholar
  97. Reichle, E. D., Pollatsek, A., Rayner, K., (2013). Using E-Z Reader to simulate eye movements in non-reading tasks: A unified framework for understanding the eye-mind link. Manuscript submitted for publication.Google Scholar
  98. Reingold, E. M., Yang, J., & Rayner, K. (2010). The time course of word frequency and case alternation effects on fixation times in reading: Evidence for lexical control of eye movements. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1677–1683.PubMedGoogle Scholar
  99. Reingold, E. M., Reichle, E. D., Glaholt, M. G., & Sheridan, H. (2012). Direct lexical control of eye movements in reading: Evidence from a survival analysis of fixation durations. Cognitive Psychology, 65(2), 177–206.PubMedCentralPubMedGoogle Scholar
  100. Rutishauser, U., & Koch, C. (2007). Probabilistic modeling of eye movement data during conjunction search via feature-based attention. Journal of Vision, 7(6):5, 1–20.Google Scholar
  101. Salthouse, T. A., & Ellis, C. L. (1980). Determinants of eye-fixation duration. American Journal of Psychology, 207–234.Google Scholar
  102. Schad, D. J., & Engbert, R. (2012). The zoom lens of attention: Simulating shuffled versus normal text reading using the swift model. Visual Cognition, 20(4–5), 391–421.PubMedCentralPubMedGoogle Scholar
  103. Schad, D. J., Nuthmann, A., & Engbert, R. (2010). Eye movements during reading of randomly shuffled text. Vision Research, 50(23), 2600–2616.PubMedGoogle Scholar
  104. Schall, J. D., & Thompson, K. G. (1999). Neural selection and control of visually guided eye movements. Annual Review of Neuroscience, 22(1), 241–259.PubMedGoogle Scholar
  105. Schroyens, W., Vitu, F., Brysbaert, M., & d’Ydewalle, G. (1999). Visual attention and eye-movement control during reading: The case of parafoveal processing. Quarterly Journal of Experimental Psychology, 52A, 1021–1046.Google Scholar
  106. Sereno, S. C., & Rayner, K. (2000). Spelling-sound regularity effects on eye fixations in reading. Perception & Psychophysics, 62(2), 402–409.Google Scholar
  107. Shioiri, S. (1993). Postsaccadic processing of the retinal image during picture scanning. Perception & Psychophysics, 53(3), 305–314.Google Scholar
  108. Smith, P. L., & Ratcliff, R. (2004). Psychology and neurobiology of simple decisions. Trends in Neurosciences, 27(3), 161–168.Google Scholar
  109. Staub, A. (2011). The effect of lexical predictability on distributions of eye fixation durations. Psychonomic Bulletin & Review, 18(6), 371–376.Google Scholar
  110. Staub, A., White, S. J., Drieghe, D., Hollway, E. C., & Rayner, K. (2010). Distributional effects of word frequency on eye fixation durations. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1280–1293.PubMedCentralPubMedGoogle Scholar
  111. Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113(4), 766–786Google Scholar
  112. Trukenbrod, H. A., & Engbert, R. (2007). Oculomotor control in a sequential search task. Vision Research, 47, 2426–2443.PubMedGoogle Scholar
  113. Trukenbrod, H. A., Engbert, R., (2012). Eye movements in a sequential scanning task: Evidence for distributed processing. Journal of Vision 12(1):5. 1–12.Google Scholar
  114. van Diepen, P., & d’Ydewalle, G. (2003). Early peripheral and foveal processing in fixations during scene perception. Visual Cognition, 10(1), 79–100.Google Scholar
  115. van Kampen, N. G. (1981). Stochastic processes in physics and chemistry. Amsterdam: North-Holland.Google Scholar
  116. Vaughan, J. (1982). Control of fixation duration in visual search and memory search: Another look. Journal of Experimental Psychology: Human Perception and Performance, 8(5), 709–723.PubMedGoogle Scholar
  117. Vaughan, J., & Graefe, T. M. (1977). Delay of stimulus presentation after the saccade in visual search. Perception & Psychophysics, 22(2), 201–205.Google Scholar
  118. Vlaskamp, B. N. S., & Hooge, I. T. C. (2006). Crowding degrades saccadic search performance. Vision Research, 46(3), 417–425.PubMedGoogle Scholar
  119. Vlaskamp, B. N. S., Over, E. A. B., & Hooge, I. T. C. (2005). Saccadic search performance: the effect of element spacing. Experimental Brain Research, 167(2), 246–259.PubMedGoogle Scholar
  120. Võ, M. L. H., Henderson, J. M., (2009). Does gravity matter? Effects of semantic and syntactic inconsistencies on the allocation of attention during scene perception. Journal of Vision 9(3):24. 1–15.Google Scholar
  121. Volkmann, F. C., Schick, A. M. L., & Riggs, L. A. (1968). Time course of visual inhibition during voluntary saccades. Journal of the Optical Society of America, 58, 562–569.PubMedGoogle Scholar
  122. Vorberg, D., Wing, A. M., (1996). Modeling variability and dependence in timing. In: Handbook of Perception and Action. Vol. 2: Motor Skills. London: Academic Press, pp. 181–262.Google Scholar
  123. Williams, C. C., & Pollatsek, A. (2007). Searching for an O in an array of Cs: Eye movements track moment-to-moment processing in visual search. Perception & Psychophysics, 69(3), 372–381.Google Scholar
  124. Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.Google Scholar
  125. Wotschack, C., (2009). Eye movements in reading strategies: how reading strategis modulate effects of distributed processing and oculomotor control. Doctoral Dissertation: University of Potsdam.Google Scholar
  126. Yang, S.-N., & McConkie, G. W. (2001). Eye movements during reading: A theory of saccade initiation times. Vision Research, 41, 3567–3585.PubMedGoogle Scholar
  127. Zelinsky, G. J. (2008). A theory of eye movements during target acquisition. Psychological Review, 115(4), 787–835.Google Scholar
  128. Zola, D. (1984). Redundancy and word perception during reading. Perception & Psychophysics, 36(3), 277–284.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.EB KognitionswissenschaftenUniversität PotsdamPotsdamGermany

Personalised recommendations