Psychonomic Bulletin & Review

, Volume 21, Issue 4, pp 843–860 | Cite as

Knowledge is power: How conceptual knowledge transforms visual cognition

Theoretical Review


In this review, we synthesize the existing literature demonstrating the dynamic interplay between conceptual knowledge and visual perceptual processing. We consider two theoretical frameworks that demonstrate interactions between processes and brain areas traditionally considered perceptual or conceptual. Specifically, we discuss categorical perception, in which visual objects are represented according to category membership, and highlight studies showing that category knowledge can penetrate early stages of visual analysis. We next discuss the embodied account of conceptual knowledge, which holds that concepts are instantiated in the same neural regions required for specific types of perception and action, and discuss the limitations of this framework. We additionally consider studies showing that gaining abstract semantic knowledge about objects and faces leads to behavioral and electrophysiological changes that are indicative of more efficient stimulus processing. Finally, we consider the role that perceiver goals and motivation may play in shaping the interaction between conceptual and perceptual processing. We hope to demonstrate how pervasive such interactions between motivation, conceptual knowledge, and perceptual processing are in our understanding of the visual environment, and to demonstrate the need for future research aimed at understanding how such interactions arise in the brain.


Semantic memory Conceptual knowledge Perception Visual processing 


  1. Abdel Rahman, R., & Sommer, W. (2008). Seeing what we know and understand: How knowledge shapes perception. Psychonomic Bulletin & Review, 15, 1055–1063. doi:10.3758/PBR.15.6.1055 Google Scholar
  2. Abdel-Rahman, R., & Sommer, W. (2012). Knowledge scale effects in face recognition: An electrophysiological investigation. Cognitive, Affective, & Behavioral Neuroscience, 12, 161–174. doi:10.3758/s13415-011-0063-9 Google Scholar
  3. Acheson, D. J., Hamidi, M., Binder, J. R., & Postle, B. R. (2011). A common neural substrate for language production and verbal working memory. Journal of Cognitive Neuroscience, 23, 1358–1367. doi:10.1162/jocn.2010.21519 PubMedCentralPubMedGoogle Scholar
  4. Anderson, E., Siegel, E. H., Bliss-Moreau, E., & Barrett, L. F. (2011). The visual impact of gossip. Science, 17, 1446–1448. doi:10.1126/science.1201574 Google Scholar
  5. Angeli, A., Davidoff, J., & Valentine, T. (2008). Face familiarity, distinctiveness, and categorical perception. Quarterly Journal of Experimental Psychology, 61, 690–707.Google Scholar
  6. Anzellotti, S., Fairhall, S. L., & Caramazza, A. (2013). Decoding representations of face identity that are tolerant to rotation. Cerebral Cortex. doi:10.1093/cercor/bht046. Advance online publication.Google Scholar
  7. Arévalo, A. L., Baldo, J. V., & Dronkers, N. F. (2012). What do brain lesions tell us about theories of embodied semantics and the human mirror neuron system? Cortex, 48, 242–254. doi:10.1016/j.cortex.2010.06.001 PubMedCentralPubMedGoogle Scholar
  8. Arguin, M., Bub, D., & Dudek, G. (1996). Shape integration for visual object recognition and its implication in category-specific visual agnosia. Visual Cognition, 3, 221–275.Google Scholar
  9. Balas, B., & Nelson, C. A. (2010). The role of face shape and pigmentation in other-race face perception: An electrophysiological study. Neuropsychologia, 48, 498–506. doi:10.1016/j.neuropsychologia.2009.10.007 PubMedCentralPubMedGoogle Scholar
  10. Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmidt, A. M., Dale, A. M., . . . Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103, 449–454. doi:10.1073/pnas.0507062103 Google Scholar
  11. Barense, M. D., Henson, R. N. A., & Graham, K. S. (2011). Perception and conception: Temporal lobe activity during complex discriminations of familiar and novel faces and objects. Journal of Cognitive Neuroscience, 23, 3052–3067. doi:10.1162/jocn_a_00010 PubMedGoogle Scholar
  12. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–609. doi:10.1017/S0140525X99002149. disc. 609–660.PubMedGoogle Scholar
  13. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. doi:10.1146/annurev.psych.59.103006.093639 PubMedGoogle Scholar
  14. Barsalou, L. W., Simmons, W. K., Barbey, A., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7, 84–91. doi:10.1016/S1364-6613(02)00029-3 PubMedGoogle Scholar
  15. Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2002). Parallel visual motion processing streams for manipulable objects and human movements. Neuron, 34, 149–159.PubMedGoogle Scholar
  16. Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2003). fMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 15, 991–1001.PubMedGoogle Scholar
  17. Beilock, S. L., Lyons, I. M., Mattarella-Micke, A., Nusbaum, H. C., & Small, S. L. (2008). Sports experience changes the neural processing of action language. Proceedings of the National Academy of Sciences of the United States of America, 105, 13269–13273. doi:10.1073/pnas.0803424105 PubMedCentralPubMedGoogle Scholar
  18. Bentin, S., & Deouell, L. Y. (2000). Structural encoding and identification in face processing: ERP evidence for separate mechanisms. Cognitive Neuropsychology, 17, 35–54. doi:10.1080/026432900380472 PubMedGoogle Scholar
  19. Blechert, J., Sheppes, G., Di Tella, C., Williams, H., & Gross, J. J. (2012). See what you think: Reappraisal modulates behavioral and neural responses to social stimuli. Psychological Science, 23, 346–353. doi:10.1177/0956797612438559 PubMedGoogle Scholar
  20. Brebner, J. L., Krigolson, O., Handy, T. C., Quadflieg, S., & Turk, D. J. (2011). The importance of skin color and facial structure in perceiving and remembering others: An electrophysiological study. Brain Research, 1388, 123–133. doi:10.1016/j.brainres.2011.02.090 PubMedGoogle Scholar
  21. Bruner, J., & Goodman, C. C. (1947). Value and need as organizing factors in perception. Journal of Abnormal Social Psychology, 42, 33–44.Google Scholar
  22. Burton, A. M., Bruce, V., & Hancock, P. J. B. (1999). From pixels to people: A model of familar face recognition. Cognitive Science, 23, 1–31. doi:10.1207/s15516709cog2301_1 Google Scholar
  23. Caharel, S., Montalan, B., Fromager, E., Bernard, C., Lalonde, R., & Mohamed, R. (2011). Other-race and inversion effects during the structural encoding stage of face processing in a race categorization task: An event-related brain potential study. International Journal of Psychophysiology, 79, 266–271. doi:10.1016/j.ijpsycho.2010.10.018 PubMedGoogle Scholar
  24. Caharel, S., Poiroux, S., Bernard, C., Thibaut, F., Lalonde, R., & Rebai, M. (2002). ERPs associated with familiarity and degree of familiarity during face recognition. International Journal of Neuroscience, 112, 1499–1512.PubMedGoogle Scholar
  25. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249. doi:10.1093/cercor/bhi007 PubMedGoogle Scholar
  26. Casasola, M. (2005). Can language do the driving? The effect of linguistic input on infants’ categorization of support spatial relations. Developmental Psychology, 41, 183–192. doi:10.1037/0012-1649.41.1.183 PubMedCentralPubMedGoogle Scholar
  27. Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2, 913–919.PubMedGoogle Scholar
  28. Chao, L. L., Weisberg, J., & Martin, A. (2002). Experience dependent modulation of category-related cortical activity. Cerebral Cortex, 12, 545–551.PubMedGoogle Scholar
  29. Chatterjee, A. (2011). Disembodying cognition. Language and Cognition, 2, 79–116. doi:10.1515/LANGCOG.2010.004 Google Scholar
  30. Clifford, A., Holmes, A., Davies, I. R. L., & Franklin, A. (2010). Color categories affect pre-attentive color perception. Biological Psychology, 85, 275–282. doi:10.1016/j.biopsycho.2010.07.014 PubMedGoogle Scholar
  31. Cloutier, J., Mason, M. F., & Macrae, C. N. (2005). The perceptual determinants of person construal: Reopening the social-cognitive toolbox. Journal of Personality and Social Psychology, 88, 885–894.PubMedGoogle Scholar
  32. Collins, J. A., Blacker, K. J., & Curby, K. M. (2013). Emotional knowledge (eventually) impacts visual processing. Presented at the Annual Conference of the Vision Sciences Society, Naples, FL.Google Scholar
  33. Collins, J. A., & Curby, K. M. (2013). Conceptual knowledge attenuates viewpoint dependency in visual object recognition. Visual Cognition. doi:10.1080/13506285.2013.836138. Advance online publication.Google Scholar
  34. Cowell, R. A., Bussey, T. J., & Saksida, L. M. (2010). Functional dissociations within the ventral object processing pathway: Cognitive modules or a hierarchical continuum? Journal of Cognitive Neuroscience, 22, 2460–2479. doi:10.1162/jocn.2009.21373 PubMedGoogle Scholar
  35. Curby, K. M., Hayward, W. G., & Gauthier, I. (2004). Laterality effects in the recognition of depth-rotated novel objects. Cognitive, Affective, & Behavioral Neuroscience, 4, 100–111. doi:10.3758/CABN.4.1.100 Google Scholar
  36. Damaraju, E., Huang, Y.-M., Barrett, L. F., & Pessoa, L. (2009). Affective learning enhances activity and functional connectivity in early visual cortex. Neuropsychologia, 47, 2480–2487. doi:10.1016/j.neuropsychologia.2009.04.023 PubMedCentralPubMedGoogle Scholar
  37. De Baene, W., Ons, B., Wagemans, J., & Vogels, R. (2008). Effects of category learning on the stimulus selectivity of macaque inferiro temporal neurons. Learning and Memory, 15, 717–727. doi:10.1101/lm.1040508 PubMedGoogle Scholar
  38. Dixon, M. J., Bub, D. N., & Arguin, M. (1998). Semantic and visual determinants of face recognition in a prosopagnosic patient. Journal of Cognitive Neuroscience, 10, 362–376.PubMedGoogle Scholar
  39. Eifuku, S., Nakata, R., Sugimori, M., Ono, T., & Tamura, R. (2010). Neural correlates of associative face memory in the anterior inferior temporal cortex of monkeys. Journal of Neuroscience, 30, 15085–15096. doi:10.1523/JNEUROSCI.0471-10.2010 PubMedGoogle Scholar
  40. Eimer, M. (2000). Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clinical Neurophysiology, 111, 694–705.PubMedGoogle Scholar
  41. Fallshore, M., & Schooler, J. W. (1995). Verbal vulnerability of perceptual expertise. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 1608–1623. doi:10.1037/0278-7393.21.6.1608 PubMedGoogle Scholar
  42. Folstein, J., Gauthier, I., & Palmeri, T. J. (2012). How category learning affects object representations: Not all morphspaces stretch alike. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 807–820. doi:10.1037/a0025836 PubMedCentralPubMedGoogle Scholar
  43. Folstein, J. R., Palmeri, T. J., & Gauthier, I. (2013). Category learning increases discriminability of relevant object dimensions in visual cortex. Cerebral Cortex, 23, 814–823. doi:10.1093/cercor/bhs067 PubMedCentralPubMedGoogle Scholar
  44. Foxe, J. J., & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans: A framework for defining “early” visual processing. Experimental Brain Research, 142, 139–150. doi:10.1007/s00221-001-0906-7 PubMedGoogle Scholar
  45. Franklin, A., Drivonikou, G. V., Bevis, L., Davies, I. R. L., Kay, P., & Regier, T. (2008a). Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults. Proceedings of the National Academy of Sciences, 105, 3221–3225. doi:10.1073/pnas.0712286105 Google Scholar
  46. Franklin, A., Drivonikou, G. V., Clifford, A., Kay, P., Regier, T., & Davies, I. R. L. (2008b). Lateralization of categorical perception of color changes with color term acquisition. Proceedings of the National Academy of Sciences, 105, 18221–18225. doi:10.1073/pnas.0809952105 Google Scholar
  47. Galli, G., Feurra, M., & Viggiano, M. P. (2006). “Did you see him in the newspaper?” Electrophysiological correlates of context and valence in face processing. Brain Research, 1119, 190–202.PubMedGoogle Scholar
  48. Gauthier, I., James, T. W., Curby, K. M., & Tarr, M. J. (2003). The influence of conceptual knowledge on visual discrimination. Cognitive Neuropsychology, 20, 507–523. doi:10.1080/02643290244000275 PubMedGoogle Scholar
  49. Gauthier, I., & Tarr, M. J. (2002). Unraveling mechanisms for expert object recognition: Bridging brain activity and behavior. Journal of Experimental Psychology: Human Perception and Performance, 28, 431–446. doi:10.1037/0096-1523.28.2.431 PubMedGoogle Scholar
  50. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience, 2, 568–573.PubMedGoogle Scholar
  51. Gentner, D., & Goldin-Meadow, S. (2003). Language in mind: Advances in the study of language and thought. Cambridge, MA: MIT Press.Google Scholar
  52. Gilbert, A. L., Regier, T., Kay, P., & Ivry, R. B. (2006). Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences, 103, 489–494.Google Scholar
  53. Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54, 677–696. doi:10.1016/j.neuron.2007.05.019 PubMedGoogle Scholar
  54. Gilchrist, J. C., & Nesberg, L. S. (1952). Need and perceptual change in need-related objects. Journal of Experimental Psychology, 44, 369–376.PubMedGoogle Scholar
  55. Gillebert, C. R., Op de Beeck, H. P., Panis, S., & Wagemans, J. (2008). Subordinate categorization enhances the neural selectivity in human objectselective cortex for fine shape differences. Journal of Cognitive Neuroscience, 21, 1054–1064. doi:10.1162/jocn.2009.21089 Google Scholar
  56. Goldberg, R. F., Perfetti, C. A., & Schneider, W. (2006a). Distinct and common cortical activations for multimodal semantic categories. Cognitive, Affective, & Behavioral Neuroscience, 6, 214–222. doi:10.3758/CABN.6.3.214 Google Scholar
  57. Goldberg, R. F., Perfetti, C. A., & Schneider, W. (2006b). Perceptual knowledge retrieval activates sensory brain regions. Journal of Neuroscience, 26, 4917–4921. doi:10.1523/JNEUROSCI.5389-05.2006 PubMedGoogle Scholar
  58. Goldstone, R. L. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: General, 123, 178–200.Google Scholar
  59. Goldstone, R. L., Landy, D., & Brunel, L. C. (2011). Improving perception to make distant connections closer. Frontiers in Psychology, 2, 385. doi:10.3389/fpsyg.2011.00385 PubMedCentralPubMedGoogle Scholar
  60. Goldstone, R. L., Lippa, Y., & Shiffrin, R. M. (2001). Altering object representations through category learning. Cognition, 78, 27–43.PubMedGoogle Scholar
  61. Goldstone, R. L., Steyvers, M., & Rogosky, B. J. (2003). Conceptual interrelatedness and caricatures. Memory & Cognition, 31, 169–180. doi:10.3758/BF03194377 Google Scholar
  62. Graham, K. S., Barense, M. D., & Lee, A. C. H. (2010). Going beyond LTM in the MTL: A synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia, 48, 831–853. doi:10.1016/j.neuropsychologia.2010.01.001 PubMedGoogle Scholar
  63. Grill-Spector, K. (2003). The neural basis of object perception. Current Opinion in Neurobiology, 13, 159–166. doi:10.1016/S0959-4388(03)00040-0 PubMedGoogle Scholar
  64. Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Science, 10, 14–23. doi:10.1016/j.tics.2005.11.006 Google Scholar
  65. Grill-Spector, K., & Malach, R. (2001). fMR-Adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107, 232–293.Google Scholar
  66. Gumperz, J. J., & Levinson, S. C. (1996). Rethinking linguistic relativity. Cambridge, UK: Cambridge University Press.Google Scholar
  67. Hancock, K. J., & Rhodes, G. (2008). Contact, configural coding, and the other-race effect in face recognition. British Journal of Psychology, 99, 45–56.PubMedGoogle Scholar
  68. Harnard, S. (1987). Category induction and representation. In S. Harnard (Ed.), Categorical perception: The groundwork of cognition (pp. 535–565). New York, NY: Cambridge University Press.Google Scholar
  69. Hauk, O., & Tschentscher, N. (2013). The body of evidence: What can neuroscience tell us about embodied semantics? Frontiers in Psychology, 4, 50. doi:10.3389/fpsyg.2013.00050 PubMedCentralPubMedGoogle Scholar
  70. He, Y., Johnson, M. K., Dovidio, J. F., & McCarthy, G. (2009). The relation between race-related implicit associations and scalp-recorded neural activity evoked by faces from different races. Social Neuroscience, 4, 426–442. doi:10.1080/17470910902949184 PubMedCentralPubMedGoogle Scholar
  71. Hehman, E., Mania, E. W., & Gaertner, S. L. (2010). Where the division lies: Common ingroup identity moderates the cross-race-facial recognition effect. Journal of Experimental Social Psychology, 46, 445–448. doi:10.1016/j.jesp.2009.11.008 Google Scholar
  72. Heisz, J. J., & Shedden, J. M. (2009). Semantic learning modifies perceptual face processing. Journal of Cognitive Neuroscience, 21, 1127–1134. doi:10.1162/jocn.2009.21104 PubMedGoogle Scholar
  73. Henson, R. N., Goshen-Gottstein, Y., Ganel, T., Otten, L. J., Quayle, A., & Rugg, M. D. (2003). Electrophysiological and haemodynamic correlates of face perception, recognition and priming. Cerebral Cortex, 13, 793–805. doi:10.1093/cercor/13.7.793 PubMedGoogle Scholar
  74. Herrmann, M. J., Schreppel, T., Jäger, D., Koehler, S., Ehlis, A.-C., & Fallgatter, A. J. (2007). The other-race effect for face perception: An event-related potential study. Journal of Neural Transmission, 114, 951–957. doi:10.1007/s00702-007-0624-9 PubMedGoogle Scholar
  75. Herzmann, G., Schweinberger, S. R., Sommer, W., & Jentzsch, I. (2004). What’s special about personally familiar faces? A multimodal approach. Psychophysiology, 41, 688–701. doi:10.1111/j.1469-8986.2004.00196.x PubMedGoogle Scholar
  76. Herzmann, G., & Sommer, W. (2010). Effects of previous experience and associated knowledge on retrieval processes of faces: An ERP investigation of newly learned faces. Brain Research, 1356, 54–72. doi:10.1016/j.brainres.2010.07.054 PubMedGoogle Scholar
  77. Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences, 95, 781–787.Google Scholar
  78. Hoenig, K., Müller, C., Herrnberger, B., Sim, E.-J., Spitzer, M., Ehret, G., & Kiefer, M. (2011). Neuroplasticity of semantic representations for musical instruments in professional musicians. NeuroImage, 56, 1714–1725. doi:10.1016/j.neuroimage.2011.02.065 PubMedGoogle Scholar
  79. Holmes, A., Franklin, A., Clifford, A., & Davies, I. (2009). Neurophysiological evidence for categorical perception of color. Brain and Cognition, 69, 426–434. doi:10.1016/j.bandc.2008.09.003 PubMedGoogle Scholar
  80. Holmes, K. J., & Wolff, P. (2012). Does categorical perception in the left hemisphere depend on language? Journal of Experimental Psychology: General, 141, 439–443. doi:10.1037/a0027289 439 Google Scholar
  81. Hopfinger, J. B., Luck, S. J., & Hillyard, S. A. (2004). Selective attention: Electrophysiological and neuromagnetic studies. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (3rd ed., pp. 561–574). Cambridge, MA: MIT Press.Google Scholar
  82. Hsu, N. S., Frankland, S. M., & Thompson-Schill, S. L. (2012). Chromacity of color perception and object color knowledge. Neuropsychologia, 50, 327–333. doi:10.1016/j.neuropsychologia.2011.12.003 PubMedCentralPubMedGoogle Scholar
  83. Itier, R. J., & Taylor, M. J. (2002). Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: A repetition study using ERPs. NeuroImage, 15, 353–372.PubMedGoogle Scholar
  84. Itier, R. J., & Taylor, M. J. (2004). Effects of repetition learning on upright, inverted and contrast-reversed face processing using ERPs. NeuroImage, 21, 1518–1532.PubMedGoogle Scholar
  85. Ito, T. A., & Urland, G. R. (2003). Race and gender on the brain: Electrocortical measures of attention to the race and gender of multiply categorizable individuals. Journal of Personality and Social Psychology, 85, 616–626.PubMedGoogle Scholar
  86. James, T. W., & Gauthier, I. (2003). Auditory and action semantic features activate sensory-specific perceptual brain regions. Current Biology, 13, 1792–1796.PubMedGoogle Scholar
  87. James, T. W., & Gauthier, I. (2004). Brain areas engaged during visual judgments by involuntary access to novel semantic information. Vision Research, 44, 429–439.PubMedGoogle Scholar
  88. Jemel, B., Pisani, M., Calabria, M., Crommelinck, M., & Bruyer, R. (2003). Is the N170 for faces cognitively penetrable? Evidence from repetition priming of Mooney faces of familiar and unfamiliar persons. Cognitive Brain Research, 17, 431–446.PubMedGoogle Scholar
  89. Jiang, X., Bradley, E., Rini, R. A., Zeffiro, T., VanMeter, J., & Riesenhuber, M. (2007). Categorization training results in shape-and category-selective human neural plasticity. Neuron, 53, 891–903. doi:10.1016/j.neuron.2007.02.015 PubMedCentralPubMedGoogle Scholar
  90. Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8, 71–78.PubMedGoogle Scholar
  91. Kaschak, M. P., Madden, C. J., & Therriault, D. J. (2005). Perception of motion affects language processing. Cognition, 94, 79–89.Google Scholar
  92. Kaufmann, J. M., Schweinberger, S. R., & Burton, A. M. (2009). N250 ERP correlates of the acquisition of face representations across different images. Journal of Cognitive Neuroscience, 21, 625–461. doi:10.1162/jocn.2009.21080 Google Scholar
  93. Kiefer, M., Sim, E. J., Herrnberger, B., Grothe, J., & Hoenig, K. (2008). The sound of concepts: Four markers for a link between auditory and conceptual brain systems. Journal of Neuroscience, 28, 12224–12230. doi:10.1523/JNEUROSCI.3579-08.2008 PubMedGoogle Scholar
  94. Kikutani, M., Roberson, D., & Hanley, J. R. (2008). What’s in the name? Categorical perception for unfamiliar faces can occur through labeling. Psychonomic Bulletin & Review, 15, 787–794. doi:10.3758/PBR.15.4.787 Google Scholar
  95. Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007). Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Sciences, 104, 20600–20605. doi:10.1073/pnas.0705654104 Google Scholar
  96. Kwok, V., Niu, Z. D., Kay, P., Zhou, K., Mo, L., Jin, Z., . . . Tan, L. H. (2011). Learning new color names produces rapid increase in gray matter in the intact adult human cortex. Proceedings of the National Academy of Sciences, 108, 6686–6688. doi:10.1073/pnas.1103217108 Google Scholar
  97. Levin, D. T., & Banaji, M. R. (2006). Distortions in the perceived lightness of faces: The role of race categories. Journal of Experimental Psychology: General, 135, 501–512. doi:10.1037/0096-3445.135.4.501 Google Scholar
  98. Levin, D. T., & Beale, J. M. (2000). Categorical perception occurs in newly learned faces, other-race faces, and inverted faces. Perception & Psychophysics, 62, 386–401.Google Scholar
  99. Levinson, S. C. (1997). From outer to inner space: Linguistic categories and non-linguistic thinking. In J. Nuyts & E. Pederson (Eds.), Language and conceptualization (pp. 13–45). Cambridge, UK: Cambridge University Press.Google Scholar
  100. Livingston, K. R., Andrews, J. K., & Harnad, S. (1998). Categorical perception effects induced by category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 732–753. doi:10.1037/0278-7393.24.3.732 PubMedGoogle Scholar
  101. Lo Gerfo, E., Oliveri, M., Torriero, S., Salerno, S., Koch, G., & Caltagirone, C. (2008). The influence of rTMS over prefrontal and motor areas in a morphological task: Grammatical vs. semantic effects. Neuropsychologia, 46, 764–770. doi:10.1016/j.neuropsychologia.2007.10.012 Google Scholar
  102. Lupyan, G. (2012). Linguistically modulated perception and cognition: The label-feedback hypothesis. Frontiers in Psychology, 3, 54. doi:10.3389/fpsyg.2012.00054 PubMedCentralPubMedGoogle Scholar
  103. Lupyan, G., Rakison, D. H., & McClelland, J. L. (2007). Language is not just for talking: Labels facilitate learning of novel categories. Psychological Science, 18, 1077–1083. doi:10.1111/j.1467-9280.2007.02028.x PubMedGoogle Scholar
  104. Lupyan, G., & Spivey, M. J. (2008). Perceptual processing is facilitated by ascribing meaning to novel stimuli. Current Biology, 18, 410–412. doi:10.1016/j.cub.2008.02.073 Google Scholar
  105. Lupyan, G., & Spivey, M. J. (2010). Redundant spoken labels facilitate perception of multiple items. Attention, Perception, & Psychophysics, 7, 2236–2253. doi:10.1111/j.0956-7976.2005.00787.x Google Scholar
  106. Lupyan, G., & Thompson-Schill, S. L. (2012). The evocative power of words: Activation of concepts by verbal and nonverbal means. Journal of Experimental Psychology: General, 141, 170–186. doi:10.1037/a0024904 Google Scholar
  107. Lupyan, G., Thompson-Schill, S. L., & Swingley, D. (2010). Conceptual penetration of visual processing. Psychological Science, 21, 682–691. doi:10.1177/0956797610366099 PubMedGoogle Scholar
  108. Macpherson, F. (2012). Cognitive penetration of colour experience: Rethinking the issue in light of an indirect mechanism. Philosophy and Phenomenological Research, 84, 24–62. doi:10.1111/j.1933-1592.2010.00481.x Google Scholar
  109. Mahon, B. Z., & Caramazza, A. (2005). The orchestration of the sensory-motor systems: Clues from neuropsychology. Cognitive Neuropsychology, 22, 480–494. doi:10.1080/02643290442000446 PubMedGoogle Scholar
  110. Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology, 102, 59–70. doi:10.1016/j.jphysparis.2008.03.004 PubMedGoogle Scholar
  111. Mahon, B. Z., Milleville, S. C., Negri, G. A. L., Rumiati, R. I., Caramazza, A., & Martin, A. (2007). Action-related properties shape object representations in the ventral stream. Neuron, 55, 507–520. doi:10.1016/j.neuron.2007.07.011 PubMedCentralPubMedGoogle Scholar
  112. Marsolek, C. J. (1999). Dissociable neural subsystems underlie abstract and specific object recognition. Psychological Science, 10, 111–118.Google Scholar
  113. Marsolek, C. J., & Burgund, E. D. (2008). Dissociable neural subsystems underlie visual working memory for abstract categories and specific exemplars. Cognitive, Affective, & Behavioral Neuroscience, 8, 17–24. doi:10.3758/CABN.8.1.17 Google Scholar
  114. Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25–45. doi:10.1146/annurev.psych.57.102904.190143 PubMedGoogle Scholar
  115. McMurray, B., Aslin, R. N., Tanenhaus, M. K., Spivey, M. J., & Subik, D. (2008). Gradient sensitivity to within-category variation in words and syllables. Journal of Experimental Psychology: Human Perception and Performance, 34, 1609–1631. doi:10.1037/a0011747 PubMedCentralPubMedGoogle Scholar
  116. Meteyard, L., Bahrami, B., & Vigliocco, G. (2007). Motion detection and motion verbs: Language affects low-level visual perception. Psychological Science, 18, 1007–1013. doi:10.1111/j.1467-9280.2007.02016.x PubMedGoogle Scholar
  117. Meteyard, L., Zokaei, N., Bahrami, B., & Vigliocco, G. (2008). Visual motion interferes with lexical decision on motion words. Current Biology, 18, 732–733. doi:10.1016/j.cub.2008.07.016 Google Scholar
  118. Michel, C., Corneille, O., & Rossion, B. (2007). Race categorization modulates holistic face encoding. Cognitive Science, 31, 911–924. doi:10.1080/03640210701530805 PubMedGoogle Scholar
  119. Michel, C., Rossion, B., Han, J., Chung, C.-S., & Caldara, R. (2006). Holistic processing is finely tuned for faces of one’s own race. Psychological Science, 17, 608–615. doi:10.1111/j.1467-9280.2006.01752.x PubMedGoogle Scholar
  120. Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417. doi:10.1016/0166-2236(83)90190-X Google Scholar
  121. Mo, L., Xu, G. P., Kay, P., & Tan, L. H. (2011). Electrophysiological evidence for the left-lateralized effect of language on preattentive categorical perception of color. Proceedings of the National Academy of Sciences, 108, 14026–14030. doi:10.1073/pnas.1111860108 Google Scholar
  122. Mouchetant-Rostaing, Y., & Girard, M. H. (2003). Electrophysiological correlates of age and gender perception on human faces. Journal of Cognitive Neuroscience, 15, 900–910.PubMedGoogle Scholar
  123. Negri, G. A. L., Rumiati, R. I., Zadini, A., Ukmar, M., Mahon, B. Z., & Caramazza, A. (2007). What is the role of motor simulation in action and object recognition? Evidence from apraxia. Cognitive Neuropsychology, 24, 795–816. doi:10.1080/02643290701707412 PubMedGoogle Scholar
  124. Neininger, B., & Pulvermüller, F. (2003). Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia, 41, 53–70. doi:10.1016/S0028-3932(02)00126-4 PubMedGoogle Scholar
  125. Nestor, A., Plaut, D. C., & Behrmann, M. (2011). Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis. Proceedings of the National Academy of Sciences, 108, 9998–10003. doi:10.1073/pnas.1102433108 Google Scholar
  126. Newell, F. N., & Bülthoff, H. H. (2002). Categorical perception of familiar objects. Cognition, 85, 113–143. doi:10.1016/S0010-0277(02)00104-X PubMedGoogle Scholar
  127. Noppeney, U., Price, C. J., Penny, W. D., & Friston, K. J. (2006). Two distinct neural mechanisms for category-selective responses. Cerebral Cortex, 16, 437–445.PubMedGoogle Scholar
  128. Notman, L. A., Sowden, P. T., & Özgen, E. (2005). The nature of learned categorical perception effects: A psychophysical approach. Cognition, 95, B1–B14. doi:10.1016/j.cognition.2004.07.002 PubMedGoogle Scholar
  129. O’Brien, J. L., & Raymond, J. E. (2012). Learned predictiveness speeds visual processing. Psychological Science, 23(4), 359–363. doi:10.1177/0956797611429800 PubMedGoogle Scholar
  130. Oliver, R. T., Geiger, E. J., Lewandowski, B. C., & Thompson-Schill, S. L. (2009). Remembrance of things touched: How sensorimotor experience affects the neural instantiation of object form. Neuropsychologia, 47, 239–247. doi:10.1016/j.neuropsychologia.2008.07.027 PubMedCentralPubMedGoogle Scholar
  131. Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior temporal lobes: A review and theoretical framework. Social Cognitive and Affective Neuroscience, 8, 123–133. doi:10.1093/scan/nss119 PubMedCentralPubMedGoogle Scholar
  132. Paller, K. A., Gonsalves, B., Grabowecky, M., Bozic, V. S., & Yamada, S. (2000). Electrophysiological correlates of recollecting faces of known and unknown individuals. NeuroImage, 11, 98–110.PubMedGoogle Scholar
  133. Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2003). Verifying properties from different modalities for concepts produces switching costs. Psychological Science, 14, 119–124. doi:10.1111/1467-9280.t01-1-01429 PubMedGoogle Scholar
  134. Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2004). Sensorimotor simulations underlie conceptual representations: Modality-specific effects of prior activation. Psychonomic Bulletin & Review, 11, 164–167.Google Scholar
  135. Peelen, M. V., & Caramazza, A. (2012). Conceptual object representations in human anterior temproal cortex. Journal of Neuroscience, 32, 15728–15736. doi:10.1523/JNEUROSCI.1953-12.2012 PubMedGoogle Scholar
  136. Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005). Functional links between motor and language systems. European Journal of Neuroscience, 21, 793–797. doi:10.1111/j.1460-9568.2005.03900.x PubMedGoogle Scholar
  137. Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22, 341–423.PubMedGoogle Scholar
  138. Radel, R., & Clément-Guillotin, C. (2012). Evidence of motivational influences in early visual perception: Hunger modulates conscious access. Psychological Science, 23, 232–234. doi:10.1177/0956797611427920 PubMedGoogle Scholar
  139. Ratcliff, N. J., Hugenberg, K., Shriver, E. R., & Bernstein, M. J. (2011). The allure of status: High-status targets are privileged in face processing and memory. Personality and Social Psychology Bulletin, 37, 1003–1015.PubMedGoogle Scholar
  140. Repetto, C., Colombo, B., Cipresso, P., & Riva, G. (2013). The effects of rTMS over the primary motor cortex: The link between action and language. Neuropsychologia, 51, 8–13. doi:10.1016/j.neuropsychologia.2012.11.001 PubMedGoogle Scholar
  141. Richardson, D. (2003). Spatial representations activated during real-time comprehension of verbs. Cognitive Science, 27, 767–780. doi:10.1016/S0364-0213(03)00064-8 Google Scholar
  142. Riesenhuber, M., & Poggio, T. (2000). Models of object recognition. Nature Neuroscience, 3, 1199–1204. doi:10.1038/81479 PubMedGoogle Scholar
  143. Roberson, D., & Davidoff, J. (2000). The categorical perception of colors and facial expressions: The effect of verbal interference. Memory & Cognition, 28, 977–986.Google Scholar
  144. Roberson, D., Pak, H., & Hanley, J. R. (2008). Categorical perception of colour in the left and right visual field is verbally mediated: Evidence from Korean. Cognition, 107, 752–762.PubMedGoogle Scholar
  145. Ross, L. A., & Olson, I. R. (2012). What’s unique about unique entities? An fMRI investigation of the semantics of famous faces and landmarks. Cerebral Cortex, 22, 2005–2015. doi:10.1093/cercor/bhr274 PubMedCentralPubMedGoogle Scholar
  146. Sagiv, N., & Bentin, S. (2001). Structural encoding of human and schematic faces: Holistic and part-based processes. Journal of Cognitive Neuroscience, 13, 937–951.PubMedGoogle Scholar
  147. Sangrigoli, S., & De Schonen, S. (2004). Effect of visual experience on face processing: A developmental study of inversion and non-native effects. Developmental Science, 7, 74–87. doi:10.1111/j.1467-7687.2004.00324.x PubMedGoogle Scholar
  148. Schweinberger, S. R., Pickering, E. C., Burton, A. M., & Kaufmann, J. M. (2002). Human brain potential correlates of repitition priming in face and name recognition. Neuropsychologia, 40, 2057–2073.PubMedGoogle Scholar
  149. Senholzi, K. B., & Ito, T. A. (2013). Structural face encoding: How task affects the N170’s sensitivity to race. Social Cognitive and Affective Neuroscience, 8, 937–942. doi:10.1093/scan/nss091 PubMedGoogle Scholar
  150. Shriver, E. R., Young, S. G., Hugenberg, K., Bernstein, M. J., & Lanter, J. R. (2008). Class, race, and the face: Social context modulates the cross-race effect in face recognition. Personality and Social Psychology Bulletin, 34, 260–278. doi:10.1177/014616720731045 PubMedGoogle Scholar
  151. Siegel, S. (2012). Cognitive penetrability and perceptual justification. Noûs, 46, 201–222. doi:10.1111/j.1468-0068.2010.00786.x Google Scholar
  152. Sigala, N., Gabbiani, F., & Logothetis, N. K. (2002). Visual categorization and object representation in monkeys and humans. Journal of Cognitive Neuroscience, 14, 187–198.PubMedGoogle Scholar
  153. Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., & Barsalou, L. W. (2007). A common neural substrate for percieving and knwoing about color. Neuropsychologia, 45, 2802–2810. doi:10.1016/j.neuropsychologia.2007.05.002 PubMedCentralPubMedGoogle Scholar
  154. Skipper, L. M., Ross, L. A., & Olson, I. R. (2011). Sensory and semantic subdivisions within the anterior temporal lobe. Neuropsychologia, 49, 3419–3429. doi:10.1016/j.neuropsychologia.2011.07.033 PubMedCentralPubMedGoogle Scholar
  155. Smilek, D., Dixon, M. J., & Merikle, P. M. (2006). Revisiting the category effect: The influence of meaning and search strategy on the efficiency of visual search. Brain Research, 1080, 73–90.PubMedGoogle Scholar
  156. Smith, E. E., Myers, N., Sethi, U., Pantazatos, S., Yanagihara, T., & Hirsch, J. (2012). Conceptual representations of perceptual knowledge. Cognitive Neuropsychology, 29, 237–248. doi:10.1080/02643294.2012.706218 PubMedCentralPubMedGoogle Scholar
  157. Snedeker, J., & Gleitman, L. (2004). Why is it hard to label our concepts? In D. G. Hall & S. R. Waxman (Eds.), Weaving a lexicon (pp. 257–294). Cambridge, MA: MIT Press.Google Scholar
  158. Spelke, E. S. (2003). What makes us smart? Core knowledge and natural language. Language in mind: Advances in the study of language and thought (pp. 277–311). Cambridge, MA: MIT Press.Google Scholar
  159. Sporer, S. L. (2001). Recognizing faces of other ethnic groups: An integration of theories. Psychology, Public Policy, and Law, 7, 36–97.Google Scholar
  160. Stahl, J., Wiese, H., & Schweinberger, S. R. (2008). Expertise and own-race bias in face processing: An event-related potential study. NeuroReport, 19, 583–587. doi:10.1097/WNR.0b013e3282f97b4d PubMedGoogle Scholar
  161. Stahl, J., Wiese, H., & Schweinberger, S. R. (2010). Learning task affects ERP-correlates of the own-race bias, but not recognition memory performance. Neuropsychologia, 48, 2027–2040. doi:10.1016/j.neuropsychologia.2010.03.024 PubMedGoogle Scholar
  162. Stokes, D. (2012). Perceiving and desiring. Retrieved from and Desiring-JULY2010-Unblinded.pdf
  163. Thomas, C., & Baker, C. I. (2013). Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans. NeuroImage, 73, 225–236. doi:10.1016/j.neuroimage.2012.03.069 PubMedGoogle Scholar
  164. Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: Inferring “how” from “where. Neuropsychologia, 41, 280–292. doi:10.1016/S0028-3932(02)00161-6 PubMedGoogle Scholar
  165. Todorov, A., Gobbini, M. I., Evans, K. K., & Haxby, J. V. (2007). Spontaneous retrieval of affective person knowledge in face perception. Neuropsychologia, 45, 163–173. doi:10.1016/j.neuropsychologia.2006.04.018 PubMedGoogle Scholar
  166. Valdés-Sosa, M., Bobes, M. A., Quiñones, I., Garcia, L., Valdes-Hernandez, P. A., Iturria, Y., . . . Asencio, J. (2011). Covert face recognition without the fusiform–temporal pathways. NeuroImage, 57, 1162–1176. doi:10.1016/j.neuroimage.2011.04.057 Google Scholar
  167. Van Bavel, J. J., Packer, D. J., & Cunningham, W. A. (2008). The neural substrates of in-group bias: A functional magnetic resonance imaging investigation. Psychological Science, 19, 1131–1139. doi:10.1111/j.1467-9280.2008.02214.x PubMedGoogle Scholar
  168. Van Bavel, J. J., Packer, D. J., & Cunningham, W. A. (2011). Modulation of the fusiform face area following minimal exposure to motivationally relevant faces: Evidence of in-group enhancement (not out-group disregard). Journal of Cognitive Neuroscience, 23, 3343–3354. doi:10.1162/jocn_a_00016 PubMedGoogle Scholar
  169. van Dantzig, S., Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2008). Perceptual processing affects conceptual processing. Cognitive Science, 32, 579–590. doi:10.1080/03640210802035365 PubMedGoogle Scholar
  170. van der Linden, M., van Turennout, M., & Indefrey, P. (2010). Formation of category representations in superior temporal sulcus. Journal of Cognitive Neuroscience, 22, 1270–1282. doi:10.1162/jocn.2009.21270 PubMedGoogle Scholar
  171. Von Der Heide, R. J., Skipper, L. M., & Olson, I. R. (2013). Anterior temporal face patches: A meta-analysis and empirical study. Frontiers in Human Neuroscience, 7, 17. doi:10.3389/fnhum.2013.00017 Google Scholar
  172. Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive human brain stimulation. Annual Review of Biomedical Engineering, 9, 527–565. doi:10.1146/annurev.bioeng.9.061206.133100 PubMedGoogle Scholar
  173. Walker, P. M., Silvert, L., Hewstone, M., & Nobre, A. C. (2008). Social contact and other-race face processing in the human brain. Social Cognitive and Affective Neuroscience, 3, 16–25. doi:10.1093/scan/nsm035 PubMedCentralPubMedGoogle Scholar
  174. Waxman, S. R., & Markow, D. B. (1995). Words as invitations to form categories: Evidence from 12- to 13-month-old infants. Cognitive Psychology, 29, 257–302. doi:10.1006/cogp.1995.1016 PubMedGoogle Scholar
  175. Weisberg, J., Van Turennout, M., & Martin, M. (2007). A neural system for learning about object function. Cerebral Cortex, 17, 513–521. doi:10.1093/cercor/bhj176 PubMedCentralPubMedGoogle Scholar
  176. Wiesel, T. N., & Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neurophysiology, 28, 1029–1040.PubMedGoogle Scholar
  177. Willems, R. M., Labruna, L., D’Esposito, M., Ivry, R., & Casasanto, D. (2011). A functional role for the motor system in language understanding: Evidence from theta-burst transcranial magnetic stimulation. Psychological Science, 22, 849–854. doi:10.1177/0956797611412387 PubMedGoogle Scholar
  178. Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences, 104, 7780–7785.Google Scholar
  179. Yoshida, H., & Smith, L. B. (2005). Linguistic cues enhance the learning of perceptual cues. Psychological Science, 16, 90–95. doi:10.1111/j.0956-7976.2005.00787.x PubMedCentralPubMedGoogle Scholar
  180. Zheng, X., & Segalowitz, S. (2013). Putting a face in its place: In- and out-group membership alters the N170 response. Social Cognitive and Affective Neuroscience. doi:10.1093/scan/nst069. Advance online publication.Google Scholar
  181. Zhou, K., Mo, L., Kay, P., Kwok, V. P. Y., Ip, T. N. M., & Tan, L. H. (2010). Newly trained lexical categories produce lateralized categorical perception of color. Proceedings of the National Academy of Sciences, 107, 9974–9978. doi:10.1073/pnas.1005669107 Google Scholar
  182. Zwaan, R. A., & Taylor, L. J. (2006). Seeing, acting, understanding: Motor resonance in language comprehension. Journal of Experimental Psychology: General, 135, 1–11. doi:10.1037/0096-3445.135.1.1 Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of PsychologyTemple UniversityPhiladelphiaUSA

Personalised recommendations