Psychonomic Bulletin & Review

, Volume 21, Issue 4, pp 961–968 | Cite as

The effect of iconicity of visual displays on statistical reasoning: evidence in favor of the null hypothesis

  • Miroslav Sirota
  • Lenka Kostovičová
  • Marie Juanchich
Brief Report

Abstract

Knowing which properties of visual displays facilitate statistical reasoning bears practical and theoretical implications. Therefore, we studied the effect of one property of visual diplays – iconicity (i.e., the resemblance of a visual sign to its referent) – on Bayesian reasoning. Two main accounts of statistical reasoning predict different effect of iconicity on Bayesian reasoning. The ecological-rationality account predicts a positive iconicity effect, because more highly iconic signs resemble more individuated objects, which tap better into an evolutionary-designed frequency-coding mechanism that, in turn, facilitates Bayesian reasoning. The nested-sets account predicts a null iconicity effect, because iconicity does not affect the salience of a nested-sets structure—the factor facilitating Bayesian reasoning processed by a general reasoning mechanism. In two well-powered experiments (N = 577), we found no support for a positive iconicity effect across different iconicity levels that were manipulated in different visual displays (meta-analytical overall effect: log OR = −0.13, 95 % CI [−0.53, 0.28]). A Bayes factor analysis provided strong evidence in favor of the null hypothesis—the null iconicity effect. Thus, these findings corroborate the nested-sets rather than the ecological-rationality account of statistical reasoning.

Keywords

Iconicity Bayesian reasoning Visual displays Nested sets Bayes factor 

Notes

Author note

We thank Cathleen Moore and three anonymous reviewers for their helpful comments on an earlier version of the manuscript.

References

  1. Albert, J. (2009). Bayesian computations with R (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  2. Barbey, A. K., & Sloman, S. A. (2007). Base-rate respect: From ecological rationality to dual processes. Behavioral and Brain Sciences, 30, 241–297. doi: 10.1017/S0140525X07001653 PubMedGoogle Scholar
  3. Brase, G. L. (2009). Pictorial representations in statistical reasoning. Applied Cognitive Psychology, 23, 369–381. doi: 10.1002/acp.1460 CrossRefGoogle Scholar
  4. Carpenter, P. A., & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology: Applied, 4, 75–100. doi: 10.1037/1076-898X.4.2.75 Google Scholar
  5. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum.Google Scholar
  6. Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty. Cognition, 58, 1–73. doi: 10.1016/0010-0277(95)00664-8 CrossRefGoogle Scholar
  7. Cumming, G. (2012). Understanding the new statistics: effect sizes, confidence intervals, and meta-analysis. New York: Routledge.Google Scholar
  8. Gaissmaier, W., Wegwarth, O., Skopec, D., Muller, A. S., Broschinski, S., & Politi, M. C. (2012). Numbers can be worth a thousand pictures: Individual differences in understanding graphical and numerical representations of health-related information. Health Psychology, 31, 286–296. doi: 10.1037/a0024850 PubMedCrossRefGoogle Scholar
  9. Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102, 684–704. doi: 10.1037/0033-295X.102.4.684 CrossRefGoogle Scholar
  10. Girotto, V., & Gonzalez, M. (2001). Solving probabilistic and statistical problems: A matter of information structure and question form. Cognition, 78, 247–276. doi: 10.1016/S0010-0277(00)00133-5 PubMedCrossRefGoogle Scholar
  11. Higgins, J. P. T., & Green, S. (Eds.). (2008). Cochrane handbook for systematic reviews of interventions. Chichester: Wiley-Blackwell.Google Scholar
  12. Lesage, E., Navarrete, G., & De Neys, W. (2013). Evolutionary modules and Bayesian facilitation: The role of general cognitive resources. Thinking and Reasoning, 19, 27–53. doi: 10.1080/13546783.2012.713177 CrossRefGoogle Scholar
  13. Mani, K., & Johnson-Laird, P. N. (1982). The mental representation of spatial descriptions. Memory & Cognition, 10, 181–187. doi: 10.3758/BF03209220 CrossRefGoogle Scholar
  14. Morris, C., & Hamilton, D. J. (1965). Aesthetics, signs, and icons. Philosophy and Phenomenological Research, 25, 356–364.CrossRefGoogle Scholar
  15. Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation checks: Detecting satisficing to increase statistical power. Journal of Experimental Social Psychology, 45, 867–872. doi: 10.1016/j.jesp.2009.03.009 CrossRefGoogle Scholar
  16. Over, D. (2007). The logic of natural sampling. Behavioral and Brain Sciences, 30, 277–277. doi: 10.1017/S0140525X07001859 CrossRefGoogle Scholar
  17. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237. doi: 10.3758/PBR.16.2.225 CrossRefGoogle Scholar
  18. Sedlmeier, P. (1999). Improving statistical reasoning: Theoretical models and practical implications. Mahwah: Erlbaum.Google Scholar
  19. Sirota, M., & Juanchich, M. (2011). Role of numeracy and cognitive reflection in Bayesian reasoning with natural frequencies. Studia Psychologica, 53, 151–161.Google Scholar
  20. Sirota, M., & Juanchich, M. (2012). Risk communication on shaky ground. Science, 338, 1286–1287. doi: 10.1126/science.338.6112.1286 PubMedCrossRefGoogle Scholar
  21. Sirota, M., Juanchich, M., & Hagmayer, Y. (2013). Ecological rationality or nested sets? Individual differences in cognitive processing predict Bayesian reasoning. Psychonomic Bulletin & Review. Advance online publication.. doi: 10.3758/s13423-013-0464-6 Google Scholar
  22. Sloman, S. A., Over, D., Slovak, L., & Stibel, J. M. (2003). Frequency illusions and other fallacies. Organizational Behavior and Human Decision Processes, 91, 296–309. doi: 10.1016/S0749-5978(03)00021-9 CrossRefGoogle Scholar
  23. Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90, 293–315. doi: 10.1037/0033-295X.90.4.293 CrossRefGoogle Scholar
  24. Vallée-Tourangeau, F., & Krüsi Penney, A. (2005). The impact of external representation in a rule discovery task. European Journal of Cognitive Psychology, 17, 820–834. doi: 10.1080/09541440440000249 CrossRefGoogle Scholar
  25. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48.Google Scholar
  26. Yamagishi, K. (2003). Facilitating normative judgments of conditional probability: Frequency or nested sets? Experimental Psychology, 50, 97–106. doi: 10.1027/1618-3169.50.2.97 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Miroslav Sirota
    • 1
  • Lenka Kostovičová
    • 2
  • Marie Juanchich
    • 3
  1. 1.Medical Decision Making and Informatics Research Group, School of MedicineKing’s College LondonLondonUK
  2. 2.Institute of Experimental PsychologySlovak Academy of SciencesBratislavaSlovakia
  3. 3.Kingston Business SchoolKingston UniversityLondonUK

Personalised recommendations