Psychonomic Bulletin & Review

, Volume 21, Issue 3, pp 708–714 | Cite as

Exogenous orienting of crossmodal attention in 3-D space: Support for a depth-aware crossmodal attentional system

  • Nathan Van der Stoep
  • Tanja C. W. Nijboer
  • Stefan Van der Stigchel
Brief Report

Abstract

The aim of the present study was to investigate exogenous crossmodal orienting of attention in three-dimensional (3-D) space. Most studies in which the orienting of attention has been examined in 3-D space concerned either exogenous intramodal or endogenous crossmodal attention. Evidence for exogenous crossmodal orienting of attention in depth is lacking. Endogenous and exogenous attention are behaviorally different, suggesting that they are two different mechanisms. We used the orthogonal spatial-cueing paradigm and presented auditory exogenous cues at one of four possible locations in near or far space before the onset of a visual target. Cues could be presented at the same (valid) or at a different (invalid) depth from the target (radial validity), and on the same (valid) or on a different (invalid) side (horizontal validity), whereas we blocked the depth at which visual targets were presented. Next to an overall validity effect (valid RTs < invalid RTs) in horizontal space, we observed an interaction between the horizontal and radial validity of the cue: The horizontal validity effect was present only when the cue and the target were presented at the same depth. No horizontal validity effect was observed when the cue and the target were presented at different depths. These results suggest that exogenous crossmodal attention is “depth-aware,” and they are discussed in the context of the supramodal hypothesis of attention.

Keywords

Cueing Exogenous Orthogonal Space 3-D Attention 

Notes

Author Note

The authors thank Jesse Smit, Marieke Janssen, and Jorinde Duits for their assistance in collecting data. This research was funded by two grants from the Netherlands Organization for Scientific Research: Grant Nos. 451-09-019 (to S.V.d.S.) and 451-10-013 (to T.C.W.N.).

References

  1. Andersen, R. A. (1997). Multimodal integration for the representation of space in the posterior parietal cortex. Philosophical Transactions of the Royal Society B, 352, 1421–1428.CrossRefGoogle Scholar
  2. Atchley, P., Kramer, A. F., Andersen, G. J., & Theeuwes, J. (1997). Spatial cuing in a stereoscopic display: Evidence for a “depth-aware” attentional focus. Psychonomic Bulletin & Review, 4, 524–529. doi: 10.3758/BF03214343 CrossRefGoogle Scholar
  3. Bauer, D., Plinge, A., Ehrenstein, W. H., Rinkenauer, G., & Grosjean, M. (2011). Spatial orienting of attention in stereo depth. Psychological Research, 76, 730–735.PubMedCrossRefGoogle Scholar
  4. Berger, A., Henik, A., & Rafal, R. (2005). Competition between endogenous and exogenous orienting of visual attention. Journal of Experimental Psychology: General, 134, 207–221. doi: 10.1037/0096-3445.134.2.207 CrossRefGoogle Scholar
  5. Bronkhorst, A. W., & Houtgast, T. (1999). Auditory distance perception in rooms. Nature, 397, 517–520.PubMedCrossRefGoogle Scholar
  6. Chen, Q., Weidner, R., Vossel, S., Weiss, P. H., & Fink, G. R. (2012). Neural mechanisms of attentional reorienting in three-dimensional space. Journal of Neuroscience, 32, 13352–13362.PubMedCrossRefGoogle Scholar
  7. Cousineau, D. (2005). Confidence intervals in within-subject designs: a simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1, 42–45.Google Scholar
  8. Couyoumdjian, A., Di Nocera, F., & Ferlazzo, F. (2003). Functional representation of 3D space in endogenous attention shifts. Quarterly Journal of Experimental Psychology, 56A, 155–183.CrossRefGoogle Scholar
  9. Downing, C. J., & Pinker, S. (1985). The spatial structure of visual attention. In M. I. Posner & O. S. M. Marin (Eds.), Attention and performance XI (pp. 171–187). Hillsdale, NJ: Erlbaum.Google Scholar
  10. Eimer, M., & Van Velzen, J. (2002). Crossmodal links in spatial attention are mediated by supramodal control processes: evidence from event-related potentials. Psychophysiology, 39, 437–449.PubMedCrossRefGoogle Scholar
  11. Farah, M. J., Wong, A. B., Monheit, M. A., & Morrow, L. A. (1989). Parietal lobe mechanisms of spatial attention: Modality-specific or supramodal? Neuropsychologia, 27, 461–470.PubMedCrossRefGoogle Scholar
  12. Frens, M. A., & Van Opstal, A. J. (1995). A quantitative study of auditory-evoked saccadic eye movements in two dimensions. Experimental Brain Research, 107, 103–117.PubMedCrossRefGoogle Scholar
  13. Gardner, J. L., Merriam, E. P., Movshon, J. A., & Heeger, D. J. (2008). Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. Journal of Neuroscience, 28, 3988–3999.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ho, C., & Spence, C. (2005). Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention. Journal of Experimental Psychology: Applied, 11, 157–174.PubMedGoogle Scholar
  15. Kim, Y., Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., & Mesulam, M. M. (1999). The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage, 9, 269–277.PubMedCrossRefGoogle Scholar
  16. Macaluso, E., & Driver, J. (2005). Multisensory spatial interactions: A window onto functional integration in the human brain. Trends in Neurosciences, 28, 264–271.PubMedCrossRefGoogle Scholar
  17. Macaluso, E., Frith, C. D., & Driver, J. (2002). Supramodal effects of cover spatial orienting triggered by visual or tactile events. Journal of Cognitive Neuroscience, 14, 389–401.PubMedCrossRefGoogle Scholar
  18. Spence, C., & Driver, J. (1997). Audiovisual links in exogenous covert spatial orienting. Perception & Psychophysics, 59, 1–22. doi: 10.3758/BF03206843 CrossRefGoogle Scholar
  19. Spence, C., & MacDonald, J. (2004). The cross-modal consequences of the exogenous spatial orienting of attention. In G. A. Calvert, C. Spence, & B. E. Stein (Eds.), The handbook of multisensory processes (1st ed., pp. 3–26). Cambridge, MA: MIT Press.Google Scholar
  20. Theeuwes, J., & Pratt, J. (2003). Inhibition of return spreads across 3-D space. Psychonomic Bulletin & Review, 10, 616–620. doi: 10.3758/BF03196523 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Nathan Van der Stoep
    • 1
  • Tanja C. W. Nijboer
    • 1
    • 2
  • Stefan Van der Stigchel
    • 1
  1. 1.Department of Experimental Psychology, Helmholtz InstituteUtrecht UniversityUtrechtThe Netherlands
  2. 2.Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation MedicineUniversity Medical Center Utrecht and De Hoogstraat RehabilitationUtrechtThe Netherlands

Personalised recommendations