Advertisement

Psychonomic Bulletin & Review

, Volume 21, Issue 2, pp 227–250 | Cite as

A generalized, likelihood-free method for posterior estimation

  • Brandon M. TurnerEmail author
  • Per B. Sederberg
Theoretical Review

Abstract

Recent advancements in Bayesian modeling have allowed for likelihood-free posterior estimation. Such estimation techniques are crucial to the understanding of simulation-based models, whose likelihood functions may be difficult or even impossible to derive. However, current approaches are limited by their dependence on sufficient statistics and/or tolerance thresholds. In this article, we provide a new approach that requires no summary statistics, error terms, or thresholds and is generalizable to all models in psychology that can be simulated. We use our algorithm to fit a variety of cognitive models with known likelihood functions to ensure the accuracy of our approach. We then apply our method to two real-world examples to illustrate the types of complex problems our method solves. In the first example, we fit an error-correcting criterion model of signal detection, whose criterion dynamically adjusts after every trial. We then fit two models of choice response time to experimental data: the linear ballistic accumulator model, which has a known likelihood, and the leaky competing accumulator model, whose likelihood is intractable. The estimated posterior distributions of the two models allow for direct parameter interpretation and model comparison by means of conventional Bayesian statistics—a feat that was not previously possible.

Keywords

Probability density approximation Cognitive modeling Likelihood-free inference Estimation Error-correcting criterion model Leaky competing accumulator model Linear ballistic accumulator model 

Notes

Acknowledgements

This work was funded by NIH award number F32GM103288. Portions of this work were presented at the 45th Annual Meeting of the Society for Mathematical Psychology. The authors would like to thank Chris Donkin, Cameron R. L. McKenzie, Mike Pratte, and Eric-Jan Wagenmakers for helpful comments that improved an earlier version of the manuscript.

Supplementary material

13423_2013_530_MOESM1_ESM.zip (4 kb)
ESM 1 (ZIP 4.31 kb)

References

  1. Anderson, J. R. (2007). How can the human mind occur in the physical universe? New York, NY: Oxford University Press.CrossRefGoogle Scholar
  2. Atkinson, R. C., & Kinchla, R. A. (1965). A learning model for forced-choice detection experiments. British Journal of Mathematical and Statistical Psychology, 18, 183–206.CrossRefGoogle Scholar
  3. Balakrishnan, J. (1998a). Measures and interpretations of vigilance performance: Evidence against the detection criterion. Human Factors, 40, 601–623.PubMedCrossRefGoogle Scholar
  4. Balakrishnan, J. (1998b). Some more sensitive measures of sensitivity and response bias. Psychological Methods, 3, 68–90.CrossRefGoogle Scholar
  5. Balakrishnan, J. (1999). Decision processes in discrimination: Fundamental misrepresentations of signal detection theory. Journal of Experimental Psychology: Human Perception and Performance, 25, 1189–1206.PubMedGoogle Scholar
  6. Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics, 41, 379–406.CrossRefGoogle Scholar
  7. Beaumont, M. A., Cornuet, J. M., Marin, J. M., & Robert, C. P. (2009). Adaptive approximate Bayesian computation. Biometrika, asp052, 1–8.Google Scholar
  8. Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics, 162, 2025–2035.PubMedCentralPubMedGoogle Scholar
  9. Benjamin, A. S., Diaz, M., & Wee, S. (2009). Signal detection with criterion noise: Applications to recognition memory. Psychological Review, 116, 84–115.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced choice tasks. Philosophical Transactions of the Royal Society, Series B: Biological Sciences, 362, 1655–1670.CrossRefGoogle Scholar
  11. Bogacz, R., Usher, M., Zhang, J., & McClelland, J. L. (2007). Extending a biologically inspired model of choice: Multi-alternatives, nonlinearity and value-based multidimensional choice. Theme issue on modeling natural action selection. Philosophical Transactions of the Royal Society: B. Biological Sciences, 362, 1655–1670.CrossRefGoogle Scholar
  12. Bogacz, R., Usher, M., Zhang, J., & McClelland, J. (2012). Extending a biologically inspired model of choice: Multi-alternatives, nonlinearity and value-based multidimensional choice. In A. K. Seth, T. J. Prescott, & J. J. Bryson (Eds.), Modelling natural action selection (pp. 91–119). Cambridge, UK: Cambridge University Press.Google Scholar
  13. Brown, S., & Heathcote, A. (2005). A ballistic model of choice response time. Psychological Review, 112, 117–128.PubMedCrossRefGoogle Scholar
  14. Brown, S., & Heathcote, A. (2008). The simplest complete model of choice reaction time: Linear ballistic accumulation. Cognitive Psychology, 57, 153–178.PubMedCrossRefGoogle Scholar
  15. Chapeau-Blondeau, F., & Rousseau, D. (2009). The minimum description length principle for probability density estimation by regular histograms. Physica A, 388, 3969–3984.CrossRefGoogle Scholar
  16. Chhikara, R. S., & Folks, L. (1989). The inverse Gaussian distribution: Theory, methodology, and applications. New York, NY: Marcel Dekker, Inc.Google Scholar
  17. Christensen, R., Johnson, W., Branscum, A., & Hanson, T. E. (2011). Bayesian ideas and data analysis: An introduction for scientists and statisticians. Boca Ranton, FL: CRC Press, Taylor and Francis Group.Google Scholar
  18. Cox, G. E., & Shiffrin, R. M. (2012). Criterion setting and the dynamics of recognition memory. Topics in Cognitive Science, 4, 135–150.PubMedCrossRefGoogle Scholar
  19. Craigmile, P., Peruggia, M., & Van Zandt, T. (2010). Hierarchical Bayes models for response time data. Psychometrika, 75, 613–632.CrossRefGoogle Scholar
  20. Csilléry, K., Blum, M. G. B., Gaggiotti, O. E., & François, O. (2010). Approximate Bayesian computation (ABC) in practice. Trends in Ecology and Evolution, 25, 410–418.PubMedCrossRefGoogle Scholar
  21. Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic word recognition. Psychological Review, 108, 452–478.PubMedCrossRefGoogle Scholar
  22. Donkin, C., Averell, L., Brown, S., & Heathcote, A. (2009). Getting more from accuracy and response time data: Methods for fitting the Linear Ballistic Accumulator. Behavioral Research Methods, 41, 1095–1110.CrossRefGoogle Scholar
  23. Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing conclusions from choice response time models: A tutorial. Journal of Mathematical Psychology, 55, 140–151.CrossRefGoogle Scholar
  24. Donkin, C., Heathcote, A., & Brown, S. (2009). Is the Linear Ballistic Accumulator model really the simplest model of choice response times: A Bayesian model complexity analysis. In A. Howes, D. Peebles, & R. Cooper (Eds.), 9th international conference on cognitive modeling – ICCM2009. Manchester, UK.Google Scholar
  25. Dorfman, D., & Biderman, M. (1971). A learning model for a continuum of sensory states. Journal of Mathematical Psychology, 8, 264–284.CrossRefGoogle Scholar
  26. Dorfman, D., Saslow, C., & Simpson, J. (1975). Learning models for a continuum of sensory states reexamined. Journal of Mathematical Psychology, 12, 178–211.CrossRefGoogle Scholar
  27. Egan, J. P. (1958). Recognition memory and the operating characteristic (Tech. Rep. No. AFCRC-TN-58-51). Bloomington, Indiana: Hearing and Communication Laboratory, Indiana University.Google Scholar
  28. Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability density. Theory of Probability and its Applications, 14, 153–158.CrossRefGoogle Scholar
  29. Erev, I. (1998). Signal detection by human observers: A cutoff reinforcement learning model of categoriation decisions under uncertainty. Psychological Review, 105, 280–298.PubMedCrossRefGoogle Scholar
  30. Feller, W. (1968). An introduction to probability theory and its applications (Vol. 1). New York: John Wiley.Google Scholar
  31. Fermanian, J. D., & Salanié, B. (2004). A nonparametric simulated maximum likelihood estimation method. Econometric Theory, 20, 701–734.CrossRefGoogle Scholar
  32. Forstmann, B. U., Anwander, A., Schäfer, A., Neumann, J., Brown, S., & Wagenmakers, E. J. (2010). Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proceedings of the National Academy of Sciences, 107, 15916–15920.CrossRefGoogle Scholar
  33. Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., von Cramon, D. Y., & Ridderinkhof, K. R. (2008). Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences, 105, 17538–17542.CrossRefGoogle Scholar
  34. Forstmann, B. U., Tittgemeyer, M., Wagenmakers, E. J., Derrfuss, J., Imperati, D., & Brown, S. (2011). The speed-accuracy tradeoff in the elderly brain: A structural model-based approach. Journal of Neuroscience, 31, 17242–17249.PubMedCrossRefGoogle Scholar
  35. Gao, J., Tortell, R., & McClelland, J. L. (2011). Dynamic integration of reward and stimulus information in perceptual decision-making. PLoS ONE, 6, 1–21.CrossRefGoogle Scholar
  36. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis. New York, NY: Chapman and Hall.Google Scholar
  37. Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91, 1–67.PubMedCrossRefGoogle Scholar
  38. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley Press.Google Scholar
  39. Heathcote, A. (2004). Fitting Wald and ex-Wald distributions to response time data: An example using functions for the S-PLUS package. Behavioral Research Methods, Instruments, & Computers, 36, 678–694.CrossRefGoogle Scholar
  40. Heathcote, A., & Brown, S. D. (2004). Reply to speckman and rouder: A theoretical basis for QML. Psychonomic Bulletin and Review, 11, 577.CrossRefGoogle Scholar
  41. Heathcote, A., Brown, S. D., & Cousineau, D. (2004). QMPE: Estimating Lognormal, Wald, and Weibull RT distributions with a parameter dependent lower bound. Behavioral Research Methods, Instruments, & Computers, 36, 277–290.CrossRefGoogle Scholar
  42. Heathcote, A., Brown, S. D., & Mewhort, D. J. (2002). Quantile maximum likelihood estimation of response time distributions. Psychonomic Bulletin and Review, 9, 394–401.PubMedCrossRefGoogle Scholar
  43. Hintzman, D. L. (1988). Judgments of frequency and recognition memory in a multiple-trace memory model. Psychological Review, 95, 528–551.CrossRefGoogle Scholar
  44. Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46, 269–299.CrossRefGoogle Scholar
  45. Kac, M. (1962). A note on learning signal detection. IRE Transactions on Information Theory, IT-8, 126–128.CrossRefGoogle Scholar
  46. Kac, M. (1969). Some mathematical models in science. Science, 166, 695–699.PubMedCrossRefGoogle Scholar
  47. Kontkanen, P., & Myllymäki, P. (2007). MDL histogram density estimation. In Proceedings of the 11th international conference on artificial intelligence and statistics. San Juan, Puerto Rico: Artificial Intelligence and Statistics.Google Scholar
  48. Kruschke, J. K. (2011). Doing Bayesian data analysis: A tutorial with R and BUGS. Burlington, MA: Academic Press.Google Scholar
  49. Kubovy, M., & Healy, A. F. (1977). The decision rule in probabilistic categorization: What it is and how it is learned. Journal of Experimental Psychology: General, 106, 427–446.CrossRefGoogle Scholar
  50. Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin and Review, 15, 1–15.PubMedCrossRefGoogle Scholar
  51. Lee, M. D., & Dry, M. J. (2006). Decision making and confidence given uncertain advice. Cognitive Science, 30, 1081–1095.PubMedCrossRefGoogle Scholar
  52. Lee, M. D., Fuss, I. G., & Navarro, D. J. (2006). A Bayesian approach to diffusion models of decision-making and response time. In B. Scholkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing (19th ed., pp. 809–815). Cambridge, MA: MIT Press.Google Scholar
  53. Lee, M. D., & Wagenmakers, E. J. (2012). A course in Bayesian graphical modeling for cognitive science. Available from http://www.ejwagenmakers.com/BayesCourse/BayesBookWeb.pdf; last downloaded January 1, 2012.
  54. Luce, R. D. (1986). Response times: Their role in inferring elementary mental organization. New York: Oxford University Press.Google Scholar
  55. Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS – a Bayesian modelling framework: Concepts, structure and extensibility. Statistics and Computing, 10, 325–337.CrossRefGoogle Scholar
  56. Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide. Mahwah, New Jersey: Lawrence Erlbaum Associates.Google Scholar
  57. Marjoram, P., Molitor, J., Plagnol, V., & Tavare, S. (2003). Markov chain Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences of the United States, 100, 324–328.CrossRefGoogle Scholar
  58. Mazurek, M. E., Roitman, J. D., Ditterich, J., & Shadlen, M. N. (2003). A role for neural integrators in perceptual decision making. Cerebral Cortex, 13, 1257–1269.PubMedCrossRefGoogle Scholar
  59. McClelland, J., & Chappell, M. (1998). Familiarity breeds differentiation: A subjective-likelihood approach to the effects of experience in recognition memory. Psychological Review, 105, 724–760.PubMedCrossRefGoogle Scholar
  60. Mueller, S. T., & Weidemann, C. T. (2008). Decision noise: An explanation for observed violations of signal detection theory. Psychonomic Bulletin and Review, 15, 465–494.PubMedCrossRefGoogle Scholar
  61. Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89, 609–626.CrossRefGoogle Scholar
  62. Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate calculations for first-passage times in Wiener diffusion models. Journal of Mathematical Psychology, 53, 222–230.CrossRefGoogle Scholar
  63. Nosofsky, R. M., Little, D. R., Donkin, C., & Fific, M. (2011). Short-term memory scanning viewed as exemplar-based categorization. Psychological Review, 118, 280–315.PubMedCentralPubMedCrossRefGoogle Scholar
  64. O’Reilly, R. C. (2001). Generalization in interactive networks: The benefits of inhibitory competition and Hebbian learning. Neural Computation, 13, 1199–1242.PubMedCrossRefGoogle Scholar
  65. O’Reilly, R. C. (2006). Biologically based computational models of cortical cognition. Science, 314, 91–94.PubMedCrossRefGoogle Scholar
  66. Peruggia, M., Van Zandt, T., & Chen, M. (2002). Was it a car or a cat I saw? An analysis of response times for word recognition. Case Studies in Bayesian Statistics, VI, 319–334.Google Scholar
  67. Pleskac, T. J., & Busemeyer, J. R. (2010). Two stage dynamic signal detection theory: A dynamic and stochastic theory of confidence, choice, and response time. Psychological Review, 117, 864–901.Google Scholar
  68. Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1), 7–11. http://CRAN.R-project.org/doc/Rnews/ Google Scholar
  69. Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116, 129–156.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., & Feldman, M. W. (1999). Population growth of human Y chromosomes: A study of Y chromosome microsatellites. Molecular Biology and Evolution, 16, 1791–1798.PubMedCrossRefGoogle Scholar
  71. Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88, 93–134.CrossRefGoogle Scholar
  72. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.CrossRefGoogle Scholar
  73. Ratcliff, R., & Starns, J. (2009). Modeling confidence and response time in recognition memory. Psychological Review, 116, 59–83.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Rice, J. A. (2007). Mathematical statistics and data analysis. Belmont, CA: Duxbury Press.Google Scholar
  75. Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods. New York, NY: Springer.CrossRefGoogle Scholar
  76. Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin and Review, 12, 573–604.PubMedCrossRefGoogle Scholar
  77. Rouder, J. N., Yue, Y., Speckman, P. L., Pratte, M. S., & Province, J. M. (2010). Gradual growth vs. shape invariance in perceptual decision making. Psychological Review, 117, 1267–1274.PubMedCrossRefGoogle Scholar
  78. Schwarz, W. (2001). The ex-Wald distribution as a descriptive model of response times. Behavioral Research Methods, Instruments, & Computers, 33, 457–469.CrossRefGoogle Scholar
  79. Sederberg, P. B., Howard, M. W., & Kahana, M. J. (2008). A context-based theory of recency and contiguity in free recall. Psychological Review, 115, 893–912.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Shadlen, M. N., & Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86, 1916–1936.Google Scholar
  81. Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM – retrieving effectively from memory. Psychonomic Bulletin and Review, 4, 145–166.PubMedCrossRefGoogle Scholar
  82. Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall.CrossRefGoogle Scholar
  83. Sisson, S., Fan, Y., & Tanaka, M. M. (2007). Sequential Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences of the United States, 104, 1760–1765.CrossRefGoogle Scholar
  84. Speckman, P. L., & Rouder, J. N. (2004). A comment on Heathcote, Brown, and Mewhort’s QMLE method for response time distributions. Psychonomic Bulletin and Review, 11, 574–576.PubMedCrossRefGoogle Scholar
  85. Stone, M. (1960). Models for choice reaction time. Psychometrika, 25, 251–260.CrossRefGoogle Scholar
  86. ter Braak, C. J. F. (2006). A Markov chain Monte Carlo version of the genetic algorithm Differential Evolution: Easy Bayesian computing for real parameter spaces. Statistics and Computing, 16, 239–249.CrossRefGoogle Scholar
  87. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6, 187–202.PubMedCentralCrossRefGoogle Scholar
  88. Treisman, M., & Williams, T. (1984). A theory of criterion setting with an application to sequential dependencies. Psychological Review, 91, 68–111.CrossRefGoogle Scholar
  89. Tsetsos, K., Usher, M., & McClelland, J. L. (2011). Testing multi-alternative decision models with non-stationary evidence. Frontiers in Neuroscience, 5, 1–18.CrossRefGoogle Scholar
  90. Turner, B. M., Dennis, S., & Van Zandt, T. (2013). Likelihood-free Bayesian analysis of memory models. Psychological Review, 120, 667–678.Google Scholar
  91. Turner, B. M., & Sederberg, P. B. (2012). Approximate Bayesian computation with Differential Evolution. Journal of Mathematical Psychology, 56, 375–385.CrossRefGoogle Scholar
  92. Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M. (2013). A method for efficiently sampling from distributions with correlated dimensions. Psychological Methods, 18, 368–384.Google Scholar
  93. Turner, B. M., & Van Zandt, T. (2012). A tutorial on approximate Bayesian computation. Journal of Mathematical Psychology, 56, 69–85.CrossRefGoogle Scholar
  94. Turner, B. M., & Van Zandt, T. (2013). Hierarchical approximate Bayesian computation. (In press at Psychometrika).Google Scholar
  95. Turner, B. M., Van Zandt, T., & Brown, S. D. (2011). A dynamic, stimulus-driven model of signal detection. Psychological Review, 118, 583–613.PubMedCrossRefGoogle Scholar
  96. Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: The leaky competing accumulator model. Psychological Review, 108, 550–592.PubMedCrossRefGoogle Scholar
  97. van Ravenzwaaij, D., van der Maas, H. L. J., & Wagenmakers, E. J. (2012). Optimal decision making in neural inhibition models. Psychological Review, 119, 201–215.PubMedCrossRefGoogle Scholar
  98. Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin and Review, 7, 424–465.PubMedCrossRefGoogle Scholar
  99. Vickers, D., & Lee, M. (1998). Dynamic models of simple judgments: I. Properties of a self-regulating accumulator module. Nonlinear Dynamics, Psychology, and Life Sciences, 2, 169–194.CrossRefGoogle Scholar
  100. Vickers, D., & Lee, M. (2000). Dynamic models of simple judgements: II. Properties of a self-organizing PAGAN (Parallel, Adaptive, Generalized Accumulator Network) model for mulit-choice tasks. Nonlinear Dynamics, Psychology, and Life Sciences, 4, 1–31.CrossRefGoogle Scholar
  101. Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin and Review, 14, 779–804.PubMedCrossRefGoogle Scholar
  102. Wald, A. (1947). Sequential analysis. New York: Wiley.Google Scholar
  103. Wilkinson, R. D. (2008). Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Biometrika, 96, 983–990.Google Scholar
  104. Wood, S. (2010). Statistical inference for noise nonlinear ecological dynamic systems. Nature, 466, 1102–1107.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  1. 1.Department of PsychologyStanford UniversityStanfordUSA
  2. 2.Department of PsychologyThe Ohio State UniversityColumbusUSA

Personalised recommendations