Psychonomic Bulletin & Review

, Volume 21, Issue 2, pp 549–556 | Cite as

Visual short-term memory load strengthens selective attention

  • Zachary J. J. Roper
  • Shaun P. VeceraEmail author
Brief Report


Perceptual load theory accounts for many attentional phenomena; however, its mechanism remains elusive because it invokes underspecified attentional resources. Recent dual-task evidence has revealed that a concurrent visual short-term memory (VSTM) load slows visual search and reduces contrast sensitivity, but it is unknown whether a VSTM load also constricts attention in a canonical perceptual load task. If attentional selection draws upon VSTM resources, then distraction effects—which measure attentional “spill-over”—will be reduced as competition for resources increases. Observers performed a low perceptual load flanker task during the delay period of a VSTM change detection task. We observed a reduction of the flanker effect in the perceptual load task as a function of increasing concurrent VSTM load. These findings were not due to perceptual-level interactions between the physical displays of the two tasks. Our findings suggest that perceptual representations of distractor stimuli compete with the maintenance of visual representations held in memory. We conclude that access to VSTM determines the degree of attentional selectivity; when VSTM is not completely taxed, it is more likely for task-irrelevant items to be consolidated and, consequently, affect responses. The “resources” hypothesized by load theory are at least partly mnemonic in nature, due to the strong correspondence they share with VSTM capacity.


Perceptual load Selective attention Visual short-term memory 



This research was supported in part by grants from the Nissan Motor Company, the Toyota Motor Company, the National Institutes of Health (R01AG026027), the National Science Foundation (BCS 11–51209), and the University of Iowa Graduate College summer fellowship awarded to the lead author. Thanks to Joshua Cosman and Daniel Vatterott for many helpful discussions. Correspondence should be addressed to Shaun P. Vecera, Department of Psychology, E11 Seashore Hall, University of Iowa, Iowa City, IA 52242–1407. Electronic mail can be sent to


  1. Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40(1), 309–328.CrossRefGoogle Scholar
  2. Baddeley, A. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology: Section A, 49(1), 5–28. doi: 10.1080/713755608 CrossRefGoogle Scholar
  3. Brainard, D. (1997). The psychophysics toolbox. Spatial vision, 10(4), 433–436. doi: 10.1163/156856897X00357 PubMedCrossRefGoogle Scholar
  4. Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–47. doi: 10.1037/0033-295X.97.4.523 PubMedCrossRefGoogle Scholar
  5. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral Brain Sciences, 24, 87–114.PubMedCrossRefGoogle Scholar
  6. De Fockert, J. W. (2013). Beyond perceptual load and dilution: a review of the role of working memory in selective attention. Frontiers in Psychology, 4, 287. doi: 10.3389/fpsyg.2013.00287 PubMedCentralPubMedCrossRefGoogle Scholar
  7. De Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291(5509), 1803–1806. doi: 10.1126/science.1056496 PubMedCrossRefGoogle Scholar
  8. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  9. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Attention, Perception, & Psychophysics, 16(1), 143–149.CrossRefGoogle Scholar
  10. Ester, E. F., & Awh, E. (2008). The processing locus of interference from salient singleton distractors. Visual Cognition, 16(2–3), 166–181. doi: 10.1080/13506280701489510 CrossRefGoogle Scholar
  11. Fougnie, D., & Marois, R. (2011). What limits working memory capacity? Evidence for modality-specific sources to the simultaneous storage of visual and auditory arrays. Journal of Experimental Psychology: Learning, Memory and Cognition, 37(6), 1329. doi: 10.1037/a0024834 Google Scholar
  12. Handy, T. C., & Mangun, G. R. (2000). Attention and spatial selection: Electrophysiological evidence for modulation by perceptual load. Perception & Psychophysics, 62(1), 175–186. doi: 10.3758/BF03212070 Google Scholar
  13. Jolicœur, P., & Dell'Acqua, R. (1999). Attentional and structural constraints on visual encoding. Psychological Research, 62(2), 154–164. doi: 10.1007/s004260050048 Google Scholar
  14. Konstantinou, N., Bahrami, B., Rees, G., & Lavie, N. (2012). Visual short-term memory load reduces retinotopic cortex response to contrast. Journal of Cognitive Neuroscience, 24(11), 2199–2210. doi: 10.1162/jocn_a_00279 PubMedCrossRefGoogle Scholar
  15. Konstantinou, N., & Lavie, N. (in press). Dissociable roles of different types of working memory load in visual detection. Journal of Experimental Psychology: Human Perception and Performance. Advance online publication. doi:  10.1037/a0033037
  16. Kyllingsbæk, S., Sy, J. L., & Giesbrecht, B. (2011). Understanding the allocation of attention when faced with varying perceptual load in partial report: A computational approach. Neuropsychologia, 49(6), 1487–1497. doi: 10.1016/j.neuropsychologia.2010.11.039 PubMedCrossRefGoogle Scholar
  17. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 451. doi: 10.1037/0096-1523.21.3.451 PubMedGoogle Scholar
  18. Lavie, N. (2010). Attention, distraction, and cognitive control under load. Current Directions in Psychological Science, 19(3), 143–148. doi: 10.1177/0963721410370295 CrossRefGoogle Scholar
  19. Lavie, N., & Cox, S. (1997). On the efficiency of visual selective attention: Efficient visual search leads to inefficient distractor rejection. Psychological Science, 8(5), 395–396. doi: 10.1111/j.1467-9280.1997.tb00432.x CrossRefGoogle Scholar
  20. Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. ((2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133(3), 339–54. doi: 10.1037/0096-3445.133.3.339 CrossRefGoogle Scholar
  21. Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56, 183–197. doi: 10.3758/BF03213897 CrossRefGoogle Scholar
  22. Macdonald, J. S., & Lavie, N. (2008). Load induced blindness. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 1078–1091. doi: 10.1037/0096-1523.34.5.1078 PubMedCentralPubMedGoogle Scholar
  23. Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Attention, Perception, & Psychophysics, 16(2), 283–290. doi: 10.3758/BF03203943 CrossRefGoogle Scholar
  24. Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278(5343), 1616–1619. doi: 10.1126/science.278.5343.1616 PubMedCrossRefGoogle Scholar
  25. Roper, Z. J. J., Cosman, J. D., Mordkoff, J. T., & Vecera, S. P. (2011). Perceptual load effect is determined by resource demand and data limitation. Journal of Vision, 11(11), 247. doi: 10.1167/11.11.247 CrossRefGoogle Scholar
  26. Roper, Z. J. J., Cosman, J. D., Vecera, S. P. (in press). Perceptual load is determined by factors known to influence visual search. Journal of Experimental Psychology: Human Perception, and Performance, Advance online publication. doi:  10.1037/a0031616
  27. Scalf, P. E., Torralbo, A., Tapia, E., & Beck, D. M. (2013). Competition explains limited attention and perceptual resources: implications for perceptual load and dilution theories. Frontiers in Psychology, 4. doi:  10.3389/fpsyg.2013.00243
  28. Torralbo, A., & Beck, D. M. (2008). Perceptual-load-induced selection as a result of local competitive interactions in visual cortex. Psychological science, 19(10), 1045–1050. doi: 10.1111/j.1467-9280.2008.02197.x PubMedCentralPubMedCrossRefGoogle Scholar
  29. Tsal, Y., & Benoni, H. (2010). Diluting the burden of load: perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1645. doi: 10.1037/a0018172 PubMedGoogle Scholar
  30. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751. doi: 10.1038/nature02447 PubMedCrossRefGoogle Scholar
  31. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92–114. doi: 10.1037//0096-1523.27.1.92 PubMedGoogle Scholar
  32. Wilson, D. E., Muroi, M., & MacLeod, C. M. (2011). Dilution, not load, affects distractor processing. Journal of Experimental Psychology: Human Perception and Performance, 37(2), 319. doi: 10.1037/a0021433 PubMedGoogle Scholar
  33. Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11(2), 269–74. doi: 10.3758/BF03196569 CrossRefGoogle Scholar
  34. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. doi: 10.1038/nature06860 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of IowaIowa CityUSA

Personalised recommendations