Advertisement

Judgments of Learning in Context: Backgrounds Can Both Reduce and Produce Metamemory Illusions

  • Joshua R. TatzEmail author
  • Zehra F. Peynircioğlu
Article

Abstract

Varying item-specific features such as size (Rhodes & Castel, 2008) or blur (Yue, Castel, & Bjork, 2013) often produces metamemory illusions in which one type of item receives higher judgments of learning (JOLs) without being recalled better. In this study, we explored how similar manipulations to context would influence JOLs. When to-be-recalled words varying in size (or blur) were accompanied by backgrounds also varying in size (or blur), the traditional JOL illusions were reduced (Experiments 1, 2, 4, and 5) compared to when there were no backgrounds (Experiments 3a, 3b, and 4). Thus, the item-specific and contextual cues were used interactively. Further, the background manipulations also sometimes themselves led to metamemory illusions regarding JOLs for the to-be-remembered items. In general, there were robust individual differences in how participants used the cues, including how they incorporated the contextual cues into their JOL decisions. In part, this may explain why interactive cue utilization did not always emerge at the group level. In sum, we showed that context may affect JOLs both directly and indirectly by influencing participants’ use of item-specific cues. These findings broaden our understanding of how cues may be utilized (e.g., Koriat, 1997) and integrated (e.g., Undorf, Söllner, and Bröder, 2018) in JOLs.

Keywords

JOL Cue utilization Cue integration Font size Individual differences 

Notes

References

  1. Arbuckle, T. Y., & Cuddy, L. L. (1969). Discrimination of item strength at time of presentation. Journal of Experimental Psychology, 81(1), 126–131. doi: https://doi.org/10.1037/h0027455 CrossRefGoogle Scholar
  2. Benjamin, A. S., Bjork, R. A., & Schwartz, B. L. (1998). The mismeasure of memory: when retrieval fluency is misleading as a metamnemonic index. Journal of Experimental Psychology: General, 127(1), 55-68. doi: https://doi.org/10.1037/0096-3445.127.1.55 CrossRefGoogle Scholar
  3. Besken, M. (2016). Picture-perfect is not perfect for metamemory: Testing the perceptual fluency hypothesis with degraded images. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(9), 1417–1433. doi: https://doi.org/10.1037/xlm0000246 CrossRefPubMedGoogle Scholar
  4. Besken, M., & Mulligan, N. W. (2013). Easily perceived, easily remembered? Perceptual interference produces a double dissociation between metamemory and memory performance. Memory & Cognition, 41(6), 897–903. doi: https://doi.org/10.3758/s13421-013-0307-8 CrossRefGoogle Scholar
  5. Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990. doi: https://doi.org/10.3758/BRM.41.4.977 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Castel, A. D. (2008). Metacognition and learning about primacy and recency effects in free recall: The utilization of intrinsic and extrinsic cues when making judgments of learning. Memory & Cognition, 36(2), 429–437. doi: https://doi.org/10.3758/MC.36.2.429 CrossRefGoogle Scholar
  7. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  8. Chalfonte, B.L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory & Cognition, 24(4), 403-416. doi: https://doi.org/10.3758/BF03200930 CrossRefGoogle Scholar
  9. Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background perception. Psychological Science, 15(8), 559-564. doi: https://doi.org/10.1111/j.0956-7976.2004.00719.x CrossRefGoogle Scholar
  10. Del Re, A. C. (2015). A practical tutorial on conducting meta-analysis in R. The Quantitative Methods for Psychology, 11(1), 37-50. doi: https://doi.org/10.20982/tqmp.11.1.p037 CrossRefGoogle Scholar
  11. Dunlosky, J., Hunt, R. R., & Clark, E. (2000). Is perceptual salience needed in explanations of the isolation effect? Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 649. doi: https://doi.org/10.1037/0278-7393.26.3.649 CrossRefPubMedGoogle Scholar
  12. Dunlosky, J., & Matvey, G. (2001). Empirical analysis of the intrinsic–extrinsic distinction of judgments of learning (JOLs): Effects of relatedness and serial position on JOLs. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(5), 1180–1191. doi: https://doi.org/10.1037/0278-7393.27.5.1180 CrossRefPubMedGoogle Scholar
  13. Dunlosky, J., & Nelson, T. O. (1994). Does the sensitivity of judgments of learning (JOLs) to the effects of various study activities depend on when the JOLs occur? Journal of Memory and Language, 33(4), 545–565. doi: https://doi.org/10.1006/jmla.1994.1026 CrossRefGoogle Scholar
  14. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. doi: https://doi.org/10.3758/BRM.41.4.1149 CrossRefGoogle Scholar
  15. Feenan, K., & Snodgrass, J. G. (1990). The effect of context on discrimination and bias in recognition memory for pictures and words. Memory & Cognition, 18(5), 515–527. doi: https://doi.org/10.3758/BF03198484 CrossRefGoogle Scholar
  16. Koriat, A. (1997). Monitoring one’s own knowledge during study: A cue-utilization approach to judgments of learning. Journal of Experimental Psychology: General, 126(4), 349–370. doi: https://doi.org/10.1037/0096-3445.126.4.349 CrossRefGoogle Scholar
  17. Koriat, A. (2008). Easy comes, easy goes? The link between learning and remembering and its exploitation in metacognition. Memory & Cognition, 36(2), 416-428. doi: https://doi.org/10.3758/MC.36.2.416 CrossRefGoogle Scholar
  18. Lange, E. B. (2005). Disruption of attention by irrelevant stimuli in serial recall. Journal of Memory and Language, 53(4), 513–531. doi: https://doi.org/10.1016/j.jml.2005.07.002 CrossRefGoogle Scholar
  19. Luna, K., Martín-Luengo, B., & Albuquerque, P. B. (2017). Do delayed judgments of learning reduce metamemory illusions? A meta-analysis. The Quarterly Journal of Experimental Psychology, 71(7), 1626-1636. doi: https://doi.org/10.1080/17470218.2017.1343362 CrossRefGoogle Scholar
  20. Magreehan, D. A., Serra, M. J., Schwartz, N. H., & Narciss, S. (2016). Further boundary conditions for the effects of perceptual disfluency on judgments of learning. Metacognition and Learning, 11(1), 35-56. doi: https://doi.org/10.1007/s11409-015-9147-1 CrossRefGoogle Scholar
  21. Matvey, G., Dunlosky, J., & Schwartz, B. (2006). The effects of categorical relatedness on judgements of learning (JOLs). Memory, 14(2), 253–261. doi: https://doi.org/10.1080/09658210500216844 CrossRefPubMedGoogle Scholar
  22. McCabe, J. (2011). Metacognitive awareness of learning strategies in undergraduates. Memory & Cognition, 39(3), 462–476. doi: https://doi.org/10.3758/s13421-010-0035-2 CrossRefGoogle Scholar
  23. McGeoch, J.A. (1942). The psychology of human learning. Oxford, England: Longmans, Green.Google Scholar
  24. Mueller, M.L. & Dunlosky, J. (2017). How beliefs can impact judgments of learning: Evaluating analytic processing theory with beliefs about fluency. Journal of Memory and Language, 93, 245–258. doi: https://doi.org/10.1016/j.jml.2016.10.008.CrossRefGoogle Scholar
  25. Mueller, M. L., Dunlosky, J., Tauber, S. K., & Rhodes, M. G. (2014). The font-size effect on judgments of learning: Does it exemplify fluency effects or reflect people’s beliefs about memory? Journal of Memory and Language, 70, 1-12. doi: https://doi.org/10.1016/j.jml.2013.09.007 CrossRefGoogle Scholar
  26. Peynircioǧlu, Z. F. & Tatz, J. R. (2019). Intensifying the intensity illusion in judgments of learning: Modality and cue combinations. Memory & Cognition, 47(3), 412-419. doi: https://doi.org/10.3758/s13421-018-0875-8 CrossRefGoogle Scholar
  27. Pieger, E., Mengelkamp, C., & Bannert, M. (2016). Metacognitive judgments and disfluency – Does disfluency lead to more accurate judgments, better control, and better performance? Learning and Instruction, 44, 31–40. doi: https://doi.org/10.1016/j.learninstruc.2016.01.012 CrossRefGoogle Scholar
  28. Rosner, T. M., Davis, H., & Milliken, B. (2015). Perceptual blurring and recognition memory: A desirable difficulty effect revealed. Acta Psychologica, 160, 11–22. doi: https://doi.org/10.1016/j.actpsy.2015.06.006 CrossRefPubMedGoogle Scholar
  29. Rhodes, M. G. (2016). Judgments of learning: Methods, data, and theory. In J. Dunlosky & S.K. Tauber (Eds.), The Oxford handbook of metamemory (pp. 65-80). New York, NY: Oxford University Press.Google Scholar
  30. Rhodes, M. G., & Castel, A. D. (2008). Memory predictions are influenced by perceptual information: Evidence for metacognitive illusions. Journal of Experimental Psychology: General, 137(4), 615–625. doi: https://doi.org/10.1037/a0013684 CrossRefGoogle Scholar
  31. Saenz, G. D., & Smith, S. M. (2018). Testing Judgments of Learning in New Contexts to Reduce Confidence. Journal of Applied Research in Memory and Cognition, 7(4), 540-551. doi: https://doi.org/10.1016/j.jarmac.2018.07.003 CrossRefGoogle Scholar
  32. Sungkhasettee, V. W., Friedman, M. C., & Castel, A. D. (2011). Memory and metamemory for inverted words: Illusions of competency and desirable difficulties. Psychonomic Bulletin & Review, 18(5), 973. doi: https://doi.org/10.3758/s13423-011-0114-9 CrossRefGoogle Scholar
  33. Susser, J. A., Mulligan, N. W., & Besken, M. (2013). The effects of list composition and perceptual fluency on judgments of learning (JOLs). Memory & Cognition, 41(7), 1000-1011. doi: https://doi.org/10.3758/s13421-013-0323-8 CrossRefGoogle Scholar
  34. Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352-373. doi: https://doi.org/10.1037/h0020071 CrossRefGoogle Scholar
  35. Undorf, M., Söllner, A., & Bröder, A. (2018). Simultaneous utilization of multiple cues in judgments of learning. Memory & Cognition, 46(4), 507–519. doi: https://doi.org/10.3758/s13421-017-0780-6 CrossRefGoogle Scholar
  36. Undorf, M., Zimdahl, M. F., & Bernstein, D. M. (2017). Perceptual fluency contributes to effects of stimulus size on judgments of learning. Journal of Memory and Language, 92, 293-304. doi: https://doi.org/10.1016/j.jml.2016.07.003 CrossRefGoogle Scholar
  37. Yue, C. L., Castel, A. D., & Bjork, R. A. (2013). When disfluency is—and is not—a desirable difficulty: The influence of typeface clarity on metacognitive judgments and memory. Memory & Cognition, 41(2), 229–241. doi: https://doi.org/10.3758/s13421-012-0255-8 CrossRefGoogle Scholar
  38. Zechmeister, E. B., & Shaughnessy, J. J. (1980). When you know that you know and when you think that you know but you don't. Bulletin of the Psychonomic Society, 15, 41-44. doi: https://doi.org/10.3758/BF03329756 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyAmerican UniversityWashingtonUSA

Personalised recommendations