Advertisement

Memory & Cognition

, Volume 47, Issue 4, pp 589–602 | Cite as

Central tendency representation and exemplar matching in visual short-term memory

  • Chad DubéEmail author
Article
  • 370 Downloads

Abstract

I address a recent extension of the generalized context model (GCM), a model which excludes prototypes, to the visual short-term memory (VSTM) literature, which is currently deluged with prototype effects. The paper includes a brief review whose aim is to discuss the background and key findings suggesting that prototypes have an obligatory influence on visual short-term memory responses in the same VSTM task that the GCM’s random walk extension, EBRW, was extended to account for: Sternberg scanning. I present a new model that incorporates such “central tendency representations” in memory, as well as several other regularities of the literature, and compare its prediction and postdictions to those of the GCM on some unpublished Sternberg scanning data. The GCM cannot account for the pattern in those data without post hoc modifications but the pattern is predicted nicely by the central tendency representation model. Although the new model is certainly wrong, the review and modeling exercise suggest a reconsideration of prototype models may be warranted, at least in the VSTM literature.

Keywords

Memory models Recognition Short-term memory Categorization 

Notes

Acknowledgements

I thank Robert Sekuler for sharing data and the methodological details of the previously unpublished data to which the models were fit.

References

  1. Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 15, 122–131.PubMedCrossRefGoogle Scholar
  2. Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19, 392–398.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157–162.PubMedCrossRefGoogle Scholar
  4. Atkinson, R.C., & Shiffrin, R.M. (1968). Human memory: A proposed system and its control processes 1. In: Psychology of learning and motivation (vol. 2, pp. 89–195). Elsevier.Google Scholar
  5. Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica, 46, 199–208.Google Scholar
  6. Ball, K., & Sekuler, R. (1980). Models of stimulus uncertainty in motion perception. Psychological Review, 87, 435–469.PubMedCrossRefGoogle Scholar
  7. Billock, V. A., & Tsou, B. H. (2011). To honor Fechner and obey Stevens: Relationships between psychophysical and neural nonlinearities. Psychological Bulletin, 137(1), 1.PubMedCrossRefGoogle Scholar
  8. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51.CrossRefGoogle Scholar
  10. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Corbett, J. E., & Melcher, D. (2014). Characterizing ensemble statistics: Mean size is represented across multiple frames of reference. Attention, Perception. Psychophysics, 76(3), 746–758.Google Scholar
  12. Corbett, J. E., & Oriet, C. (2011). The whole is indeed more than the sum of its parts: Perceptual averaging in the absence of individual item representation. Acta Psychologica, 138(2), 289–301.PubMedCrossRefGoogle Scholar
  13. Corbett, J. E., & Song, J.-H. (2014). Statistical extraction affects visually guided action. Visual Cognition, 22(7), 881–895.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Corbett, J. E., Wurnitsch, N., Schwartz, A., & Whitney, D. (2012). An aftereffect of adaptation to mean size. Visual Cognition, 20(2), 211–231.CrossRefGoogle Scholar
  15. Drew, S. A., Chubb, C., & Sperling, G. (2009). Quantifying attention: Attention filtering in centroid estimations. Journal of Vision, 9(8), 229–229.CrossRefGoogle Scholar
  16. Drew, S. A., Chubb, C. F., & Sperling, G. (2010). Precise attention filters for Weber contrast derived from centroid estimations. Journal of Vision, 10(10), 20–20.PubMedCrossRefGoogle Scholar
  17. Dubé, C., & Sekuler, R. (2015). Obligatory and adaptive averaging in visual short-term memory. Journal of Vision, 15(4), 13–13.PubMedCrossRefGoogle Scholar
  18. Dubé, C., Payne, L., Sekuler, R., & Rotello, C. M. (2013). Paying attention to attention in recognition memory: Insights from models and electrophysiology. Psychological Science, 24(12), 2398–2408.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dubé, C., Zhou, F., Kahana, M., & Sekuler, R. (2014). Similarity-based distortion of visual short-term memory is due to perceptual averaging. Vision Research, 96, 18–6.CrossRefGoogle Scholar
  20. Feller, W. (1968) An introduction to probability theory and its applications Vol. 1. New York: Wiley.Google Scholar
  21. Graham, N. V. (2011). Beyond multiple pattern analyzers modeled as linear filters (as classical v1 simple cells): Useful additions of the last 25 years. Vision Research, 51(13), 1397–1430.PubMedCrossRefGoogle Scholar
  22. Grossberg, S. (1982). How does a brain build a cognitive code? In: Studies of mind and brain (pp. 1–52). Springer.Google Scholar
  23. Haberman, J., Harp, T., & Whitney, D. (2009). Averaging facial expressions over time. Journal of Vision, 9, 1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Huang, J., & Sekuler, R. (2010a). Distortions in recall from visual memory: Two classes of attractors at work. Journal of Vision, 10(24), 1–27.PubMedCrossRefGoogle Scholar
  25. Huang, J., & Sekuler, R (2010b). Attention protects the fidelity of visual memory: Behavioral and electrophysiological evidence. The Journal of Neuroscience.Google Scholar
  26. Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45(3), 188.PubMedCrossRefGoogle Scholar
  27. Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial patterns: A noisy exemplar approach. Vision Research, 42(18), 2177–2192.PubMedCrossRefGoogle Scholar
  28. Kahana, M. J., Zhou, F., Geller, A. S., & Sekuler, R. (2007). Lure similarity affects visual episodic recognition: Detailed tests of a noisy exemplar model. Memory Cognition, 35(6), 1222–1232.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lu, Z.-L., & Dosher, B. A. (1998). External noise distinguishes attention mechanisms. Vision Research, 38 (9), 1183–1198.PubMedCrossRefGoogle Scholar
  30. Luce, R. D. (1961). A choice theory analysis of similarity judgments. Psychometrika, 26(2), 151–163.CrossRefGoogle Scholar
  31. Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Macmillan, N.A., & Creelman, C.D. (2005). Detection theory: A user’s guide (2nd ed.). Lawrence Erlbaum Associates.Google Scholar
  33. McKinley, S. C., & Nosofsky, R. M. (1995). Investigations of exemplar and decision bound models in large, ill-defined category structures. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 128–148.PubMedPubMedCentralGoogle Scholar
  34. Naka, K., & Rushton, W. (1966). S-potentials from colour units in the retina of fish (Cyprinidae). The Journal of Physiology, 185(3), 536–555.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Nosofsky, R. M. (1984). Choice, similarity, and the context theory of classification. Journal of Experimental Psychology: Learning. Memory, and Cognition, 10(1), 104–114.CrossRefGoogle Scholar
  36. Nosofsky, R. M. (1985a). Luce’s choice model and thurstones categorical judgment model compared: Kornbrot’s data revisited. Perception and Psychophysics, 37(1), 89–91.PubMedCrossRefGoogle Scholar
  37. Nosofsky, R. M. (1985b). Overall similarity and the identification of separable-dimension stimuli: A choice model analysis. Perception and Psychophysics, 38(5), 415–432.PubMedCrossRefGoogle Scholar
  38. Nosofsky, R. M. (1986a). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1), 39–61.CrossRefGoogle Scholar
  39. Nosofsky, R. M. (1986b). Attention, similarity, and the identification–categorization relationship. Journal of Experimental Psychology: General, 115(1), 39.CrossRefGoogle Scholar
  40. Nosofsky, R. M. (1992). Multidimensional models of perception and cognition (p. 363–393). In F.G. Ashby (Ed.) Hillsdale: Lawrence Erlbaum Associates, Inc.Google Scholar
  41. Nosofsky, R. M. (2000). Exemplar representation without generalization? Comment on Smith and Minda’s (2000) Thirty categorization results in search of a model. Journal of Experimental Psychology: Learning Memory, and Cognition, 26(6), 1735–1743.Google Scholar
  42. Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplarbased random walk model of speeded classification. Psychological Review, 104(2), 266.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Nosofsky, R. M., & Kantner, J. (2006). Exemplar similarity, study list homogeneity, and short-term perceptual recognition. Memory Cognition, 34(1), 112–124.PubMedCrossRefGoogle Scholar
  44. Nosofsky, R. M., Little, D. R., Donkin, C., & Fific, M. (2011). Short-term memory scanning viewed as exemplar-based categorization. Psychological Review, 118(2), 280.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Nosofsky, R. M., Cox, G. E., Cao, R., & Shiffrin, R. M. (2014). An exemplar-familiarity model predicts short-term and long-term probe recognition across diverse forms of memory search. Journal of Experimental Psychology: Learning Memory, and Cognition, 40(6), 1524.Google Scholar
  46. Oriet, C., & Hozempa, K. (2016). Incidental statistical summary representation over time. Journal of Vision, 16(3), 3–3.PubMedCrossRefGoogle Scholar
  47. Parzen, E. (1962) Stochastic processes. San Francisco: Holden-Day.Google Scholar
  48. Payne, L., & Sekuler, R. (2014). The importance of ignoring: alpha oscillations protect selectivity. Current Directions in Psychological Science, 23(3), 171–177.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Payne, L., Guillory, S., & Sekuler, R. (2013). Attention-modulated alpha-band oscillations protect against intrusion of irrelevant information. Journal of Cognitive Neuroscience, 25(9), 1463–1476.PubMedPubMedCentralCrossRefGoogle Scholar
  50. R Development Core Team (2008). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project.org (ISBN 3-900051- 07-0).
  51. Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019.PubMedCrossRefGoogle Scholar
  52. Sekuler, R., & Kahana, M. J. (2007). A stimulus-oriented approach to memory. Current Directions in Psychological Science, 16, 305–310.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Shiffrin, R. M. (1993). Short-term memory: a brief commentary. Memory & Cognition, 21(2), 193–197.CrossRefGoogle Scholar
  54. Sun, P., Chubb, C., Wright, C. E., & Sperling, G. (2016). The centroid paradigm: quantifying feature-based attention in terms of attention filters. Attention, Perception, & Psychophysics, 78(2), 474–515.CrossRefGoogle Scholar
  55. Watamaniuk, S. N. J., & Sekuler, R. (1992). Temporal and spatial integration in dynamic random-dot stimuli. Vision Research, 32(12), 2341–2347.PubMedCrossRefGoogle Scholar
  56. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120–1135.PubMedCrossRefGoogle Scholar
  57. Woodworth, R. S., & Schlosberg, H. (1954). Experimental psychology. Oxford and IBH Publishing.Google Scholar
  58. Zaki, S. R., & Nosofsky, R. M. (2001). Exemplar accounts of blending and distinctiveness effects in perceptual old-new recognition. Journal of Experimental Psychology: Learning, Memory and Cognition, 27(4), 1022–1041.Google Scholar
  59. Zaki, S. R., Nosofsky, R. M., Stanton, R. D., & Cohen, A. L. (2003). Prototype and exemplar accounts of category learning and attentional allocation: a reassessment. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1160–1173.PubMedGoogle Scholar
  60. Zanto, T. P., Sekuler, R., Dube, C., & Gazzaley, A. (2013). Age-related changes in expectation based modulation of motion detectability. PLoS One, 8, 1–10.CrossRefGoogle Scholar
  61. Zhang, W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22(11), 1434–1441.  https://doi.org/10.1177/0956797611417006 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Zhou, F., Kahana, M. J., & Sekuler, R. (2004). Short-term episodic memory for visual textures: a roving probe gathers some memory. Psychological Science, 15(2), 112–118.PubMedCrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.University of South FloridaTampaUSA

Personalised recommendations