Advertisement

Verbal working memory and linguistic long-term memory: Exploring the lexical cohort effect

  • Benjamin KowialiewskiEmail author
  • Steve Majerus
Article

Abstract

Numerous studies have shown that verbal working memory (vWM) performance is strongly influenced by linguistic knowledge, with items more familiar at sublexical, lexical, and/or semantic levels leading to higher vWM recall performance. Among the many different psycholinguistic variables whose impact on vWM has been studied, the lexical cohort effect is one of the few effects that has not yet been explored. The lexical cohort effect reflects the fact that words sharing their first phonemes with many other words (e.g. alcove, alligator, alcohol…) are typically responded to more slowly as compared to words sharing their first phonemes with a smaller number of words. In a pilot experiment (Experiment 1), we manipulated the lexical cohort effect in an immediate serial recall task and found no effect. Experiment 2 showed that, in a lexical decision task, participants responded more quickly to items stemming from small cohorts, showing that the material used in Experiment 1 allowed for a valid manipulation of the cohort effect. Experiment 3, using stimuli from Experiment 2 associated with maximal cohort effects during lexical decision, failed again to reveal a cohort effect in an immediate serial recall task. We argue that linguistic knowledge impacts vWM performance via continuous interactive activation within the linguistic system, which is not the case for the lexical cohort variable that may influence language processing only at the initial stages of stimulus activation.

Keywords

Working memory Cohort competition Linguistic knowledge 

Notes

Acknowledgements

We thank S. Moes and C. Tonon for their help in data acquisition and all the participants for their time devoted to this study.

References

  1. Acheson, D. J., & MacDonald, M. C. (2009). Verbal working memory and language production: Common approaches to the serial ordering of verbal information. Psychological Bulletin, 135(1), 50–68. doi: https://doi.org/10.1037/a0014411 Google Scholar
  2. Baddeley, A. D. (1966). Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. The Quarterly Journal of Experimental Psychology, 18(4), 362–365. doi: https://doi.org/10.1080/14640746608400055 Google Scholar
  3. Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working memory. In The cognitive neuroscience of working memory (pp. 59–80).Google Scholar
  4. Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. doi: https://doi.org/10.18637/jss.v067.i01 Google Scholar
  5. Besner, D., & Risko, E. F. (2016). Thinking outside the box when reading aloud: Between (localist) module connection strength as a source of word frequency effects. Psychological Review, 123(5), 592–599.Google Scholar
  6. Brener, R. (1940). An experimental investigation of memory span. Journal of Experimental Psychology, 26(5), 467.Google Scholar
  7. Campoy, G., Castellà, J., Provencio, V., Hitch, G. J., & Baddeley, A. D. (2015). Automatic semantic encoding in verbal short-term memory: Evidence from the concreteness effect. The Quarterly Journal of Experimental Psychology, 68(4), 759–778. doi: https://doi.org/10.1080/17470218.2014.966248 Google Scholar
  8. Chen, Q., & Mirman, D. (2012). Competition and cooperation among similar representations: Toward a unified account of facilitative and inhibitory effects of lexical neighbors. Psychological Review, 199(2), 417–430. doi: https://doi.org/10.1037/a0027175.Competition Google Scholar
  9. Clarkson, L., Roodenrys, S., Miller, L. M., & Hulme, C. (2016). The phonological neighbourhood effect on short-term memory for order. Memory, 25(3), 391–402. doi: https://doi.org/10.1080/09658211.2016.1179330 Google Scholar
  10. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.Google Scholar
  11. Cowan, N. (1995). Attention and memory: An integrated framework. Oxford, England: Oxford University Press.Google Scholar
  12. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–185. doi: https://doi.org/10.1017/S0140525X01003922 Google Scholar
  13. Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (1997). Lexical access in aphasic and nonaphasic speakers. Psychological Review, 104(4), 801–838.Google Scholar
  14. Evans, G. A. L., Lambon Ralph, M. A., & Woollams, A. M. (2012). What’s in a word? A parametric study of semantic influences on visual word recognition. Psychonomic Bulletin & Review, 19(2), 325–331. doi: https://doi.org/10.3758/s13423-011-0213-7 Google Scholar
  15. Gaskell, M. G., & Marslen-Wilson, W. (2002). Representation and competition in the perception of spoken words. Cognitive Psychology, 45(2), 220–266.Google Scholar
  16. Gathercole, S. E., Frankish, C. R., Pickering, S. J., & Peaker, S. (1999). Phonotactic influences on short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 84–95. doi: https://doi.org/10.1037/0278-7393.25.3.562 Google Scholar
  17. Gordon, J. K., & Dell, G. S. (2001). Phonological neighborhood effects: Evidence from aphasia and connectionist modeling. Brain and Language, 79(1), 21–31. doi:10.1006/brln.2001.2574Google Scholar
  18. Guérard, K., & Saint-Aubin, J. (2012). assessing the effect of lexical variables in backward recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(2), 312–324. doi: https://doi.org/10.1037/a0025481 Google Scholar
  19. Gupta, P. (2009). A computational model of nonword repetition, immediate serial recall, and nonword learning. In A. Thorn & M. Page (Eds.), Interactions between short-term and long-term memory in the verbal domain, (pp. 108–135). Hove, UK: Psychology Press.Google Scholar
  20. Gupta, P., Lipinski, J., & Aktunc, E. (2005). Reexamining the phonological similarity effect in immediate serial recall: The roles of type of similarity, category cuing, and item recall. Memory & Cognition, 33(6), 1001–1016.Google Scholar
  21. Hulme, C., Maughan, S., & Brown, G. D. A. (1991). Memory for familiar and unfamiliar words: Evidence for a long-term memory contribution to short-term memory span. Journal of Memory and Language, 30(6), 685–701.Google Scholar
  22. Hulme, C., Roodenrys, S., Schweickert, R., Brown, G. D. A., Martin, S., & Stuart, G. (1997). Word-frequency effects on short-term memory tasks: Evidence for a redintegration process in immediate serial recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(5), 1217–1232.Google Scholar
  23. Hulme, C., Stuart, G., Brown, G. D. A., & Morin, C. (2003). High- and low-frequency words are recalled equally well in alternating lists: Evidence for associative effects in serial recall. Journal of Memory and Language, 49(4), 500–518. doi: https://doi.org/10.1016/S0749-596X(03)00096-2 Google Scholar
  24. Jefferies, E., Frankish, C. R., & Lambon Ralph, M. A. (2006a). Lexical and semantic binding in verbal short-term memory. Journal of Memory and Language, 54(1), 81–98. doi: https://doi.org/10.1016/j.jml.2005.08.001 Google Scholar
  25. Jefferies, E., Frankish, C. R., & Lambon Ralph, M. A. (2006b). Lexical and semantic influences on item and order memory in immediate serial recognition : Evidence from a novel task. The Quarterly Journal of Experimental Psychology, 59(5), 949–964. doi: https://doi.org/10.1080/02724980543000141 Google Scholar
  26. Jeffreys, H. (1998). The theory of probability. Oxford, UK: Oxford University Press.Google Scholar
  27. Kocagoncu, E., Clarke, A., Devereux, B. J., & Tyler, L. K. (2017). Decoding the Cortical Dynamics of Sound-Meaning Mapping. The Journal of Neuroscience, 37(5), 1312–1319. doi: https://doi.org/10.1523/JNEUROSCI.2858-16.2016 Google Scholar
  28. Kowialiewski, B., & Majerus, S. (2018a). Testing the redintegration hypothesis by a single probe recognition paradigm. Memory, 0(0), 1–9. doi: https://doi.org/10.1080/09658211.2018.1448420 Google Scholar
  29. Kowialiewski, B., & Majerus, S. (2018b). The non-strategic nature of linguistic long-term memory effects in verbal short-term memory. Journal of Memory and Language, 101, 64–83. doi: https://doi.org/10.1016/j.jml.2018.03.005 Google Scholar
  30. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package : Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1–26. doi: https://doi.org/10.18637/jss.v082.i13 Google Scholar
  31. Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 10(8), 707–710.Google Scholar
  32. Lewandowsky, S. (1999). Redintegration and Response Suppression in Serial Recall: A Dynamic Network Model. International Journal of Psychology, 34(5/6), 434–446.Google Scholar
  33. Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764–766. doi: https://doi.org/10.1016/j.jesp.2013.03.013 Google Scholar
  34. Majerus, S. (2013). Language repetition and short-term memory: an integrative framework. Frontiers in Human Neuroscience, 7, 357. doi: https://doi.org/10.3389/fnhum.2013.00357 Google Scholar
  35. Majerus, S., Van der Linden, M., Mulder, L., Meulemans, T., & Peters, F. (2004). Verbal short-term memory reflects the sublexical organization of the phonological language network: Evidence from an incidental phonotactic learning paradigm. Journal of Memory and Language, 51(2), 297–306. doi: https://doi.org/10.1016/j.jml.2004.05.002 Google Scholar
  36. Marslen-Wilson, W. D. (1987). Functional parallelism in spoken word-recognition. Cognition, 25(1–2), 71–102. doi: https://doi.org/10.1016/0010-0277(87)90005-9 Google Scholar
  37. Martin, N., Dell, G. S., Saffran, E. M., & Schwartz, M. F. (1994). Origins of paraphasias in deep dysphasia: Testing the consequences of a decay impairment to an interactive spreading activation model of lexical retrieval. Brain and Language, 47(4), 609–660.Google Scholar
  38. Martin, N., Saffran, E. M., & Dell, G. S. (1996). Recovery in deep dysphasia: Evidence for a relation between auditory–verbal STM capacity and lexical errors in repetition. Brain and Language, 52(1), 83–113.Google Scholar
  39. Martin, R. C., Lesch, M. F., & Bartha, M. C. (1999). Independence of input and output phonology in word processing and short-term memory. Journal of Memory and Language, 41(1), 3–29.Google Scholar
  40. Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame : An open-source , graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324. doi: https://doi.org/10.3758/s13428-011-0168-7 Google Scholar
  41. McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18(1), 1–86.Google Scholar
  42. McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88(5), 375.Google Scholar
  43. New, B. (2006). Lexique 3: Une nouvelle base de données lexicales. Actes de La Conférence Traitement Automatique Des Langues Naturelles.Google Scholar
  44. Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19(5), 779–819. doi: https://doi.org/10.3758/s13423-012-0272-4 Google Scholar
  45. Pexman, P. M., Lupker, S. J., & Hino, Y. (2002). The impact of feedback semantics in visual word recognition: Number of features effects in lexical decision and naming tasks. Psychonomic Bulletin & Review, 9(3), 542–549.Google Scholar
  46. Poirier, M., & Saint-Aubin, J. (1995). Memory for related and unrelated words: Further evidence on the influence of semantic factors in immediate serial recall. The Quarterly Journal of Experimental Psychology, 48(2), 384–404. doi: https://doi.org/10.1080/14640749508401396 Google Scholar
  47. Poirier, M., & Saint-Aubin, J. (1996). Immediate serial recall, word frequency, item identity and item position. Canadian Journal of Experimental Psychology, 50(4), 408–412.Google Scholar
  48. Poirier, M., & Saint-Aubin, J. (2005). Word frequency effects in immediate serial recall: Item familiarity and item co-occurrence have the same effect. Memory, 13(3–4), 325–332. doi: https://doi.org/10.1080/09658210344000369 Google Scholar
  49. R Development Core Team. (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.r-project.org.Google Scholar
  50. Romani, C., McAlpine, S., & Martin, R. C. (2008). Concreteness effects in different tasks: implications for models of short-term memory. The Quarterly Journal of Experimental Psychology, 61(2), 292–323. doi:10.1080/17470210601147747Google Scholar
  51. Roodenrys, S., Hulme, C., Lethbridge, A., Hinton, M., & Nimmo, L. M. (2002). Word-frequency and phonological-neighborhood effects on verbal short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(6), 1019–1034. doi: https://doi.org/10.1037//0278-7393.28.6.1019
  52. Sadat, J., Martin, C. D., Costa, A., & Alario, F. (2014). Reconciling phonological neighborhood effects in speech production through single trial analysis. Cognitive Psychology, 68, 33–58. doi: https://doi.org/10.1016/j.cogpsych.2013.10.001 Google Scholar
  53. Saint-Aubin, J., Guérard, K., Chamberland, C., & Malenfant, A. (2014). Delineating the contribution of long-term associations to immediate recall. Memory, 22(4), 360–373. doi: https://doi.org/10.1080/09658211.2013.794242 Google Scholar
  54. Savill, N., Ellis, A. W., & Jefferies, E. (2016). Newly-acquired words are more phonologically robust in verbal short-term memory when they have associated semantic representations. Neuropsychologia, 98, 1–13. doi: https://doi.org/10.1016/j.neuropsychologia.2016.03.006 Google Scholar
  55. Schönbrodt, F. D., Wagenmakers, E.-J., Zehetleitner, M., & Perugini, M. (2017). Sequential hypothesis testing with bayes factors: Efficiently testing mean differences. Psychological Methods, 22(2), 322. doi: https://doi.org/10.1037/met0000061 Google Scholar
  56. Schweickert, R. (1993). A multinomial processing tree model for degradation and redintegration in immediate recall. Memory & Cognition, 21(2), 168–175.Google Scholar
  57. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137–149.Google Scholar
  58. Stuart, G., & Hulme, C. (2000). The effects of word co-occurrence on short-term memory: Associative links in long-term memory affect short-term memory performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(3), 796–802. doi: https://doi.org/10.1037//0278-7393.26.3.796 Google Scholar
  59. Team, J. (2017). JASP (Version 0.8.1.1)[Computer software].Google Scholar
  60. Tse, C.-S., & Altarriba, J. (2007). Testing the associative-link hypothesis in immediate serial recall: Evidence from word frequency and word imageability effects. Memory, 15(6), 675–690. doi: https://doi.org/10.1080/09658210701467186 Google Scholar
  61. Tubach, J. P., & Boë, L. J. (1990). Un corpus de transcription phonétique(300 000 phones). Constitution et exploitation statistique.Google Scholar
  62. Tyler, L. K., Moss, H. E., Galpin, A., & Voice, J. K. (2002). Activating meaning in time: The role of imageability and form-class. Language and Cognitive Processes, 17(5), 471–502. doi: https://doi.org/10.1080/01690960143000290 Google Scholar
  63. Tyler, L. K., Voice, J. K., & Moss, H. E. (2000). The interaction of meaning and sound in spoken word recognition. Psychonomic Bulletin & Review, 7(2), 320–326. doi: https://doi.org/10.3758/BF03212988 Google Scholar
  64. Vitevitch, M. S., Chan, K. Y., & Roodenrys, S. (2012). Complex network structure influences processing in long-term and short-term memory. Journal of Memory and Language, 67(1), 30–44. doi: https://doi.org/10.1016/j.jml.2012.02.008 Google Scholar
  65. Vitevitch, M. S., & Luce, P. A. (1999). Probabilistic phonotactics and neighborhood activation in spoken word recognition. Journal of Memory and Language, 40(3), 374–408.Google Scholar
  66. Wagenmakers, E.-J., Wetzels, R., Borsboom, D., & van der Maas, H. L. J. (2011). Why psychologists must change the way they analyze their data: the case of psi: comment on Bem (2011). doi: https://doi.org/10.1037/a0022790
  67. Watkins, O. C., & Watkins, M. J. (1977). Serial recall and the modality effect: Effects of word frequency. Journal of Experimental Psychology: Human Learning and Memory, 3(6), 712–718.Google Scholar
  68. Yap, M. J., Lim, G. Y., & Pexman, P. M. (2015). Semantic richness effects in lexical decision: The role of feedback. Memory & Cognition, 43(8), 1148–1167. doi: https://doi.org/10.3758/s13421-015-0536-0 Google Scholar
  69. Zhuang, J., Randall, B., Stamatakis, E. a., Marslen-Wilson, W. D., & Tyler, L. K. (2011). The Interaction of Lexical Semantics and Cohort Competition in Spoken Word Recognition: An fMRI Study. Journal of Cognitive Neuroscience, 23(12), 3778–3790. doi: https://doi.org/10.1162/jocn_a_00046 Google Scholar
  70. Zhuang, J., Tyler, L. K., Randall, B., Stamatakis, E. A., & Marslen-Wilson, W. D. (2014). Optimally efficient neural systems for processing spoken language. Cerebral Cortex, 24(4), 908–918. doi: https://doi.org/10.1093/cercor/bhs366 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Psychology and Neuroscience of Cognition Research Unit (PsyNCog)University of LiègeLiègeBelgium
  2. 2.Fund for Scientific Research – F.R.S.-FNRSBrusselsBelgium

Personalised recommendations