Advertisement

Interpolated retrieval effects on list isolation: Individual differences in working memory capacity

  • Christopher N. WahlheimEmail author
  • Timothy R. Alexander
  • Michael J. Kane
Article
  • 42 Downloads

Abstract

We examined the effects of interpolated retrieval from long-term memory (LTM) and short-term memory (STM) on list isolation in dual-list free recall and whether individual differences in working memory capacity (WMC) moderated those effects. Ninety-seven subjects completed study–test trials that included two study lists separated by either an exemplar generation task (LTM retrieval) or a two-back task (STM retrieval). Subjects then completed an externalized free recall task that allowed for the examination of response accessibility and monitoring. Individual differences in WMC were assessed using three complex span tasks: operation span, reading span, and rotation span. Correct recall and intratrial intrusion summary scores showed no effect of interpolated retrieval on either response accessibility or monitoring. However, serial-position curves for correct recall of List 1 showed larger primacy in the two-back than in the exemplar generation task for high-WMC subjects. We interpreted these results from a context change perspective, as showing that interpolated LTM retrieval accelerated context change for subjects who processed the context more effectively. We consider the implications of these findings for models of memory.

Keywords

Context change Control processes Free recall Interference Working memory 

Notes

Author note

The research was supported by internal funding from the University of North Carolina at Greensboro awarded to C.N.W. For their assistance with collecting and coding data, we thank Alexis Blackwell, Marina Hutcherson, Caroline Infante Arismendi, Cayla Kitts, Carson Peske, and Anna Warner.

References

  1. Aslan, A., Zellner, M., & Bäuml, H. (2010). Working memory capacity predicts listwise directed forgetting in adults and children. Memory, 18, 442–450.CrossRefGoogle Scholar
  2. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposal system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89–195). New York, NY: Academic Press.Google Scholar
  3. Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225, 82–91.CrossRefGoogle Scholar
  4. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412.  https://doi.org/10.1016/j.jml.2007.12.005 CrossRefGoogle Scholar
  5. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York, NY: Academic Press.  https://doi.org/10.1016/S0079-7421(08)60452-1 Google Scholar
  6. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  7. Bousfield, W. A., & Rosner, S. R. (1970). Free vs. uninhibited recall. Psychonomic Science, 20, 75–76.CrossRefGoogle Scholar
  8. Coltheart, M. (1981). The MRC psycholinguistic database. Quarterly Journal of Experimental Psychology, 33A, 497–505.  https://doi.org/10.1080/14640748108400805 CrossRefGoogle Scholar
  9. Delaney, P. F., & Sahakyan, L. (2007). Unexpected costs of high working memory capacity following directed forgetting and context change manipulations. Memory & Cognition, 35, 1074–1082.CrossRefGoogle Scholar
  10. DeLosh, E. L., & McDaniel, M. A. (1996). The role of order information in free recall: Application to the word-frequency effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1136–1146.  https://doi.org/10.1037/0278-7393.22.5.1136 Google Scholar
  11. Divis, K., & Benjamin, A. (2014). Retrieval speeds context fluctuation: Why semantic generation enhances later learning but hinders prior learning. Memory & Cognition, 42, 1049–1062.CrossRefGoogle Scholar
  12. Estes, W. K. (1955). Statistical theory of spontaneous recovery and regression. Psychological Review, 62, 145–154.  https://doi.org/10.1037/h0048509 CrossRefGoogle Scholar
  13. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.  https://doi.org/10.3758/BRM.41.4.1149 CrossRefGoogle Scholar
  14. Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Thousand Oaks, CA: Sage.Google Scholar
  15. Gardiner, J. M., Thompson, C. P., & Maskarinec, A. S. (1974). Negative recency in initial free recall. Journal of Experimental Psychology, 103, 71–78.CrossRefGoogle Scholar
  16. Healey, M. K., & Kahana, M. J. (2014). Is memory search governed by universal principles or idiosyncratic strategies? Journal of Experimental Psychology: General, 143, 575–596.  https://doi.org/10.1037/a0033715 CrossRefGoogle Scholar
  17. Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46, 269–299.  https://doi.org/10.1006/jmps.2001.1388 CrossRefGoogle Scholar
  18. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434–446.  https://doi.org/10.1016/j.jml.2007.11.007 CrossRefGoogle Scholar
  19. Jang, Y., & Huber, D. E. (2008). Context retrieval and context change in free recall: Recalling from long-term memory drives list isolation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 112–127.  https://doi.org/10.1037/0278-7393.34.1.112 Google Scholar
  20. Kahana, M. J., Dolan, E. D., Sauder, C. L., & Wingfield, A. (2005). Intrusions in episodic recall: Age differences in editing of overt responses. Journal of Gerontology, 60B, P92–P97.  https://doi.org/10.1093/geronb/60.2.P92 CrossRefGoogle Scholar
  21. Kahana, M. J., Howard, M. W., Zaromb, F., & Wingfield, A. (2002). Age dissociates recency and lag recency effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 530–540.  https://doi.org/10.1037/0278-7393.28.3.530 Google Scholar
  22. Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130, 169–183.  https://doi.org/10.1037/0096-3445.130.2.169 CrossRefGoogle Scholar
  23. Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47–70.  https://doi.org/10.1037/0096-3445.132.1.47 CrossRefGoogle Scholar
  24. Keppel, G., Postman, L., & Zavortink, B. (1967). Response availability in free and modified free recall for two transfer paradigms. Journal of Verbal Learning and Verbal Behavior, 6, 654–660.CrossRefGoogle Scholar
  25. Klein, K. A., Shiffrin, R. M., & Criss, A. H. (2007). Putting context in context. In J. S. Nairne (Ed.), The foundations of remembering: Essays in honor of Henry L. Roediger III (pp. 171–189). New York, NY: Psychology Press.Google Scholar
  26. Lehman, M., & Malmberg, K. J. (2009). A global theory of remembering and forgetting from multiple lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 970–988.  https://doi.org/10.1037/a0015728 Google Scholar
  27. Lehman, M., & Malmberg, K. J. (2013). A buffer model of memory encoding and temporal correlations in retrieval. Psychological Review, 120, 155–189.  https://doi.org/10.1037/a0030851 CrossRefGoogle Scholar
  28. Lohnas, L. J., Polyn, S.M., & Kahana, M. J. (2015). Expanding the scope of memory search: Modeling intralist and interlist effects in free recall. Psychological Review, 122, 337–363.CrossRefGoogle Scholar
  29. Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers, 28, 203–208.  https://doi.org/10.3758/BF03204766 CrossRefGoogle Scholar
  30. Malmberg, K. J., & Shiffrin, R. M. (2005). The “one-shot” hypothesis for context storage. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 322–336.  https://doi.org/10.1037/0278-7393.31.2.322 Google Scholar
  31. Meier, M. E., & Kane, M. J. (2013). Working memory capacity and Stroop interference: Global versus local indices of executive control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 748–759.Google Scholar
  32. Meier, M. E., Smeekens, B. A., Siliva, P. J., Kwapil, T. R., & Kane, M. J. (2018). Working memory capacity and the antisaccade task: A microanalytic–macroanalytic investigation of individual differences in goal activation and maintenance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 68–84.Google Scholar
  33. Mensink, G.-J., & Raaijmakers, J. G. W. (1988). A model for interference and forgetting. Psychological Review, 95, 434–455.  https://doi.org/10.1037/0033-295X.95.4.434 CrossRefGoogle Scholar
  34. Miller, A. L., & Unsworth, N. (2018). Individual differences in working memory capacity and search efficiency. Memory & Cognition, 46, 1149–1163.  https://doi.org/10.3758/s13421-018-0827-3 CrossRefGoogle Scholar
  35. Miyake, A., & Shah, P. (Eds.). (1999). Models of working memory: Mechanisms of active maintenance and executive control. New York, NY: Cambridge University Press.Google Scholar
  36. Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of Bayes factors for common designs (R package version 0.9.12-4.2). Retrieved from https://CRAN.R-project.org/package=BayesFactor
  37. Pastötter, B., Schicker, S., Niedernhuber, J., & Bäuml, K.-H. T. (2011). Retrieval during learning facilitates subsequent memory encoding. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 287–297.  https://doi.org/10.1037/a0021801 Google Scholar
  38. Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116, 129–156.  https://doi.org/10.1037/a0014420 CrossRefGoogle Scholar
  39. R Development Core Team. (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
  40. Raaijmakers, J. G. W., & Shiffrin, R. M. (1980). SAM: A theory of probabilistic search of associative memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 14, pp. 207–262). New York, NY: Academic Press.  https://doi.org/10.1016/S0079-7421(08)60162-0 Google Scholar
  41. Redick, T. S., Broadway, J. M., Meier, M. E., Kuriakose, P. S., Unsworth, N., Kane, M. J., & Engle, R. W. (2012). Measuring working memory capacity with automated complex span tasks. European Journal of Psychological Assessment, 28, 164–171.CrossRefGoogle Scholar
  42. Roediger, H. L., III, & Payne, D. G. (1985). Recall criterion does not affect recall level or hypermnesia: A puzzle for generate/recognize theories. Memory & Cognition, 13, 1–7.  https://doi.org/10.3758/BF03198437 CrossRefGoogle Scholar
  43. Rohrer, D. (1996). On the relative and absolute strength of a memory trace. Memory & Cognition, 24, 188–201.CrossRefGoogle Scholar
  44. Rohrer, D., & Wixted, J. T. (1994). An analysis of latency and interresponse time in free recall. Memory & Cognition, 22, 511–524.  https://doi.org/10.3758/BF03198390 CrossRefGoogle Scholar
  45. Sahakyan, L., Abushanab, B., Smith, J. R., & Gray, K. J. (2014). Individual differences in contextual storage: Evidence from the list-strength effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 873–881.Google Scholar
  46. Sahakyan, L., & Hendricks, H. E. (2012). Context change and retrieval difficulty in the list-before-last paradigm. Memory & Cognition, 40, 844–860.CrossRefGoogle Scholar
  47. Sahakyan, L., & Kelley, C. M. (2002). A contextual change account of the directed forgetting effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 1064–1072.  https://doi.org/10.1037/0278-7393.28.6.1064 Google Scholar
  48. Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47, 609–612.CrossRefGoogle Scholar
  49. Shiffrin, R. M. (1970). Forgetting, trace erosion or retrieval failure? Science, 168, 1601–1603.  https://doi.org/10.1126/science.168.3939.1601 CrossRefGoogle Scholar
  50. Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM—retrieving effectively from memory. Psychonomic Bulletin & Review, 4, 145–166.  https://doi.org/10.3758/BF03209391 CrossRefGoogle Scholar
  51. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2012). A 21 word solution. Dialogue, 26, 4–7.Google Scholar
  52. Soriano, M. F., & Bajo, M. T. (2007). Working memory resources and interference in directed forgetting. Psicologia, 28, 63–85.Google Scholar
  53. Spillers, G. J., & Unsworth, N. (2011). Variation in working memory capacity and temporal–contextual retrieval from episodic memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1532–1539.  https://doi.org/10.1037/a0024852 Google Scholar
  54. Unsworth, N. (2007). Individual differences in working memory capacity and episodic retrieval: Examining the dynamics of delayed and continuous distractor free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 1020–1034.  https://doi.org/10.1037/0278-7393.33.6.1020 Google Scholar
  55. Unsworth, N. (2009). Variation in working memory capacity, fluid intelligence, and episodic recall: A latent variable examination of differences in the dynamics of free recall. Memory & Cognition, 37, 837–849.  https://doi.org/10.3758/MC.37.6.837 CrossRefGoogle Scholar
  56. Unsworth, N. (2016). Working memory capacity and recall from long-term memory: Examining the influences of encoding strategies, study time allocation, search efficiency, and monitoring abilities. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 50–61.Google Scholar
  57. Unsworth, N., & Brewer, G. (2010). Variation in working memory capacity and intrusions: Differences in generation or editing? European Journal of Cognitive Psychology, 22, 990–1000.CrossRefGoogle Scholar
  58. Unsworth, N., Brewer, G. A., & Spillers, G. J. (2011). Inter- and intraindividual variation in immediate free recall: An examination of serial position functions and recall initiation strategies. Memory, 19, 67–82.  https://doi.org/10.1080/09658211.2010.535658 CrossRefGoogle Scholar
  59. Unsworth, N., Brewer, G. A., & Spillers, G. J. (2013). Focusing the search: Proactive and retroactive interference and the dynamics of free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1742–1756.Google Scholar
  60. Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114, 104–132.  https://doi.org/10.1037/0033-295X.114.1.104 CrossRefGoogle Scholar
  61. Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37, 498–505.  https://doi.org/10.3758/BF03192720 CrossRefGoogle Scholar
  62. Unsworth, N., & Spillers, G. J. (2010). Variation in working memory capacity and episodic recall: The contributions of strategic encoding and contextual retrieval. Psychonomic Bulletin & Review, 17, 200–205.  https://doi.org/10.3758/PBR.17.2.200 CrossRefGoogle Scholar
  63. Unsworth, N., Spillers, G. J., & Brewer, G. A. (2012). Evidence for noisy contextual search: Examining the dynamics of list-before-last recall. Memory, 20, 1–13.CrossRefGoogle Scholar
  64. Van Overschelde, J. P., Rawson, K. A., & Dunlosky, J. (2004). Category norms: An updated and expanded version of the Battig and Montague (1969) norms. Journal of Memory and Language, 50, 289–335.  https://doi.org/10.1016/j.jml.2003.10.003 CrossRefGoogle Scholar
  65. Wahlheim, C. N., Ball, H., & Richmond, L. L. (2017). Adult age differences in production and monitoring in dual-list free recall. Psychology and Aging, 32, 338–353.CrossRefGoogle Scholar
  66. Wahlheim, C. N., & Huff, M. J. (2015). Age differences in the focus of retrieval: Evidence from dual-list free recall. Psychology and Aging, 30, 768–780.CrossRefGoogle Scholar
  67. Wahlheim, C. N., Richmond, L. L., Huff, M. J., & Dobbins, I. G. (2016). Characterizing adult age differences in the initiation and organization of retrieval: A further investigation of retrieval dynamics in dual-list free recall. Psychology and Aging, 31, 786–797.CrossRefGoogle Scholar
  68. Ward, G., & Tan, L. (2004). The effect of the length of to-be-remembered lists and intervening lists on free recall: A reexamination using overt rehearsal. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 1196–1210.  https://doi.org/10.1037/0278-7393.30.6.1196 Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Christopher N. Wahlheim
    • 1
    Email author
  • Timothy R. Alexander
    • 1
  • Michael J. Kane
    • 1
  1. 1.University of North Carolina at GreensboroGreensboroUSA

Personalised recommendations