Advertisement

Memory & Cognition

, Volume 47, Issue 1, pp 17–32 | Cite as

Attention reorganizes as structure is detected in dynamic action

  • Bridgette Martin HardEmail author
  • Meredith Meyer
  • Dare Baldwin
Article

Abstract

Once one sees a pattern, it is challenging to “unsee” it; discovering structure alters processing. Precisely what changes as this happens is unclear, however. We probed this question by tracking changes in attention as viewers discovered statistical patterns within unfolding event sequences. We measured viewers’ “dwell times” (e.g., Hard, Recchia, & Tversky, 2011) as they advanced at their own pace through a series of still-frame images depicting a sequence of event segments (“actions”) that were discoverable only via sensitivity to statistical regularities among the component motion elements. “Knowledgeable” adults, who had had the opportunity to learn these statistical regularities prior to the slideshow viewing, displayed dwell-time patterns indicative of sensitivity to the statistically defined higher-level segmental structure; “naïve” adults, who lacked the opportunity for prior viewing, did not. These findings clarify that attention reorganizes in conjunction with statistically guided discovery of segmental structure within continuous human activity sequences. As patterns emerge in the mind, attention redistributes selectively to target boundary regions, perhaps because they represent highly informative junctures of “predictable unpredictability.”

Keywords

Action perception Event segmentation Statistical learning Dwell time 

References

  1. Astheimer, L. B., & Sanders, L. D. (2011). Predictability affects early perceptual processing of word onsets in continuous speech, Neuropsychologia, 49, 3512–3516.CrossRefGoogle Scholar
  2. Baldwin, D. (2005). Discerning intentions: Characterizing the cognitive system at play. In B. Homer & C. Tamis-LeMonda (Eds.), The development of social cognition and communication (pp. 117–144). Mahwah, NJ: Erlbaum.Google Scholar
  3. Baldwin, D., Andersson, A., Saffran, J., & Meyer, M. (2008). Segmenting dynamic human action via statistical structure. Cognition, 106, 1382–1407.CrossRefGoogle Scholar
  4. Baldwin, D. A., & Baird, J. A. (2001). Discerning intentions in dynamic human action. Trends in Cognitive Sciences, 5, 171–178.CrossRefGoogle Scholar
  5. Baldwin, D., & Pederson, E. (2016). Attentional enhancement at event boundaries. Poster presented at the meeting of the Cognitive Science Society, Philadelphia, PA.Google Scholar
  6. Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions to statistical learning. Journal of Memory and Language, 83, 62–78.  https://doi.org/10.1016/j.jml.2015.04.004 CrossRefGoogle Scholar
  7. Cassimatis, N. L. (2006). A cognitive substrate for achieving human-level intelligence. AI Magazine, 27, 45–56.Google Scholar
  8. Christiansen, M. H., & Chater, N. (2016). The now-or-never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, e62:1–52.  https://doi.org/10.1017/S0140525X1500031X Google Scholar
  9. Cutler, A. (2012). Native listening: Language experience and the recognition of spoken words. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  10. Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236–243.  https://doi.org/10.1016/S1364-6613(00)01662-4 CrossRefGoogle Scholar
  11. Hard, B. M., Recchia, G., & Tversky, B. (2011). The shape of action. Journal of Experimental Psychology: General, 140, 586–604.CrossRefGoogle Scholar
  12. Hard, B. M., Tversky, B., & Lang, D. S. (2006). Making sense of abstract events: Building event schemas. Memory & Cognition, 34, 1221–1235.CrossRefGoogle Scholar
  13. Hartley, R. V. L. (1928). Transmission of information. Bell System Technical Journal, 17, 535–563.CrossRefGoogle Scholar
  14. Huff, M., Papenmeier, F., & Zacks, J. M. (2012). Visual target detection is impaired at event boundaries. Visual Cognition, 20, 848–864.CrossRefGoogle Scholar
  15. Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2012). The Goldilocks effect: Human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS ONE, 7, e36399.  https://doi.org/10.1371/journal.pone.0036399 CrossRefGoogle Scholar
  16. Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2014). The Goldilocks effect in infant auditory attention. Child Development, 85, 1795–1804.  https://doi.org/10.1111/cdev.12263 Google Scholar
  17. Kim, R., Seitz, A., Feenstra, H., & Shams, L. (2009). Testing assumptions of statistical learning: Is it long-term and implicit? Neuroscience Letters, 461, 145–149.CrossRefGoogle Scholar
  18. Koo, H. (2008). Change in the adult phonological processing system by learning non-adjacent phonotactic constraints from brief experience: An experimental and computational study. Dissertation Abstracts International Section A: Humanities and Social Sciences, 69, 591.Google Scholar
  19. Kosie, J., & Baldwin, D. (2018a). Attention rapidly reorganizes to structure in a novel activity sequence. Cognition. Accepted manuscript pending minor revision.Google Scholar
  20. Kosie, J., & Baldwin, D. (2018b). Attentional profiles linked to event segmentation are robust to missing information. Cognitive Research: Principles & Implications (Special issue on attention in natural and mediated realities). Invited resubmission.Google Scholar
  21. Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12, 72–79.  https://doi.org/10.1016/j.tics.2007.11.004 CrossRefGoogle Scholar
  22. Mayberry, C. R., Livesey, E. J., & Dux, P. E. (2010). Rapid learning of rapid temporal contexts. Psychonomic Bulletin & Review, 17, 417–420.  https://doi.org/10.3758/PBR.17.3.417 CrossRefGoogle Scholar
  23. Meyer, M., & Baldwin, D. A. (2011). Statistical learning of action: The role of conditional probability. Learning and Behavior, 39, 383–398. CrossRefGoogle Scholar
  24. Newtson, D. (1973). Attribution and the unit of perception of ongoing behavior. Journal of Personality and Social Psychology, 28, 28–38.CrossRefGoogle Scholar
  25. Newtson, D., & Engquist, G. (1976). The perceptual organization of ongoing behavior. Journal of Experimental Social Psychology, 12, 436–450.  https://doi.org/10.1016/0022-1031(76)90076-7 CrossRefGoogle Scholar
  26. Newtson, D., Engquist, G. A., & Bois, J. (1977). The objective basis of behavior units. Journal of Personality and Social Psychology, 35, 847–862.  https://doi.org/10.1037/0022-3514.35.12.847 CrossRefGoogle Scholar
  27. Olson, I. R., & Chun, M. M. (2001). Temporal contextual cuing of visual attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1299–1313.  https://doi.org/10.1037/0278-7393.27.5.1299 Google Scholar
  28. Pani, J. R. (2000). Cognitive description and change blindness. Visual Cognition, 7, 107–126.CrossRefGoogle Scholar
  29. Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., & Nelson, C. A. (2005). Plasticity of face processing in infancy. Proceedings of the National Academy of Sciences, 102, 5297–5300.CrossRefGoogle Scholar
  30. Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10, 233–238.CrossRefGoogle Scholar
  31. Rodríguez-Fornells, A., Cunillera, T., Mestres-Missé, A., & de Diego-Balaguer, R. (2009). Neurophysiological mechanisms involved in language learning in adults. Philosophical Transactions of the Royal Society B, 364, 3711–3735.CrossRefGoogle Scholar
  32. Saffran, J. R. (2003). Statistical language learning: Mechanisms and constraints. Current Directions in Psychological Science, 12, 110–114.CrossRefGoogle Scholar
  33. Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996a). Statistical learning by 8-month old infants. Science, 274, 1926–1928.  https://doi.org/10.1126/science.274.5294.1926 CrossRefGoogle Scholar
  34. Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996b). Word segmentation: The role of distributional cues. Journal of Memory and Language, 35, 606–621.  https://doi.org/10.1006/jmla.1996.0032 CrossRefGoogle Scholar
  35. Sanders, L. D., Ameral, V., & Sayles, K. (2009). Event-related potentials index segmentation of nonsense sounds. Neuropsychologia, 47, 1183–1186.CrossRefGoogle Scholar
  36. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656.  https://doi.org/10.1002/j.1538-7305.1948.tb01338.x CrossRefGoogle Scholar
  37. Stahl, A. E., Romberg, A. R., Roseberry, S., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Infants segment continuous events using transitional probabilities, Child Development, 85, 1821–1826.  https://doi.org/10.1111/cdev.12247 CrossRefGoogle Scholar
  38. Swallow, K. M., & Zacks, J. M., (2008). Sequences learned without awareness can orient attention during the perception of human activity, Psychonomic Bulletin & Review, 15, 116–122.  https://doi.org/10.3758/PBR.15.1.116 CrossRefGoogle Scholar
  39. Swallow, K. M., Zacks, J. M., & Abrams, R. A. (2009). Event boundaries in perception affect memory encoding and updating. Journal of Experimental Psychology: General, 138, 236–257.  https://doi.org/10.1037/a0015631 CrossRefGoogle Scholar
  40. Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134, 552–564.  https://doi.org/10.1037/0096-3445.134.4.552 CrossRefGoogle Scholar
  41. Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21, 1934–1945.CrossRefGoogle Scholar
  42. Zacks, J. M. (2004). Using movement and intentions to understand simple events. Cognitive Science, 28, 979–1008.CrossRefGoogle Scholar
  43. Zacks, J. M., Kumar, S., Abrams, R. A., & Mehta, R. (2009). Using movement and intentions to understand human activity. Cognition, 112, 201–216.CrossRefGoogle Scholar
  44. Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A mind–brain perspective. Psychological Bulletin, 133, 273–293.  https://doi.org/10.1037/0033-2909.133.2.273 CrossRefGoogle Scholar
  45. Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130, 29–58.  https://doi.org/10.1037/0096-3445.130.1.29 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Bridgette Martin Hard
    • 1
    Email author
  • Meredith Meyer
    • 2
  • Dare Baldwin
    • 3
  1. 1.Department of Psychology and NeuroscienceDuke UniversityDurhamUSA
  2. 2.Department of PsychologyOtterbein UniversityWestervilleUSA
  3. 3.Department of PsychologyUniversity of OregonEugeneUSA

Personalised recommendations