Memory & Cognition

, Volume 46, Issue 8, pp 1344–1359 | Cite as

Mental models and omissive causation

  • Sangeet KhemlaniEmail author
  • Christina Wasylyshyn
  • Gordon Briggs
  • Paul Bello


Some causal relations refer to causation by commission (e.g., “A gunshot causes death”), and others refer to causation by omission (e.g., “Not breathing causes death”). We describe a theory of the representation of omissive causation based on the assumption that people mentally simulate sets of possibilities—mental models—that represent causes, enabling conditions, and preventions (Goldvarg & Johnson-Laird, 2001). The theory holds that omissive causes, enabling conditions, and preventions each refer to distinct sets of possibilities. For any such causal relation, reasoners typically simulate one initial possibility, but they are able to consider alternative possibilities through deliberation. These alternative possibilities allow them to deliberate over finer-grained distinctions when reasoning about causes and effects. Hence, reasoners should be able to distinguish between omissive causes and omissive enabling conditions. Four experiments corroborated the predictions of the theory. We describe them and contrast the results with the predictions of alternative accounts of causal representation and inference.


Omissions Absences Causal reasoning Mental models Negative possibilities Double prevention 

Supplementary material

13421_2018_841_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 12 kb)


  1. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. CrossRefGoogle Scholar
  2. Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. arXiv:1506.04967Google Scholar
  3. Bernstein, S. (2014). Omissions as possibilities. Philosophical Studies, 167, 1–23.CrossRefGoogle Scholar
  4. Bernstein, S. (2016). Omission impossible. Philosophical Studies, 173, 2575–2589.CrossRefGoogle Scholar
  5. Byrne, R. M. J. (2005). The rational imagination: How people create alternatives to reality. Cambridge, MA: MIT Press.Google Scholar
  6. Cheng, P. W., & Novick, L. R. (1991). Causes versus enabling conditions. Cognition, 40, 83–120.CrossRefPubMedGoogle Scholar
  7. Clarke, R., Shepherd, J., Stigall, J., Waller, R. R., & Zarpentine, C. (2013). Causation, norms, and omissions: A study of causal judgments. Philosophical Psychology, 28, 279–293. CrossRefGoogle Scholar
  8. Collins, J. (2000). Preemptive prevention. Journal of Philosophy, 97, 223–234.CrossRefGoogle Scholar
  9. Dowe, P. (1999). Good connections: Causation and causal processes. In H. Sankey (Ed.), Causation and laws of nature (pp. 247–263). Dordrecht, The Netherlands: Kluwer.Google Scholar
  10. Dowe, P. (2001). A counterfactual theory of prevention and “causation” by omission. Australasian Journal of Philosophy, 79, 216–226.CrossRefGoogle Scholar
  11. Einhorn, H. J., & Hogarth, R. M. (1986). Judging probable cause. Psychological Bulletin, 99, 3–19. CrossRefGoogle Scholar
  12. Ferrara, S. D. (2013). Causal value and causal link. In S. D. Ferrara, R. Boscolo-Berto, & G. Viel (Eds.), Malpractice and medical liability: European state of the art and guidelines (pp. 93–107). Berlin, Germany: Springer.CrossRefGoogle Scholar
  13. Frosch, C. A., & Johnson-Laird, P. N. (2011). Is everyday causation deterministic or probabilistic? Acta Psychologica, 137, 280–291.CrossRefPubMedGoogle Scholar
  14. Geurts, B. (2005). Entertaining alternatives: disjunctions as modals. Natural Language Semantics, 13, 383–410. CrossRefGoogle Scholar
  15. Godfrey-Smith, P. (2009). Causal pluralism. In H. Beebee, C. Hitchcock, & P. Menzies (Eds.), The Oxford handbook of causation (pp. 326–337). Oxford, UK: Oxford University Press.Google Scholar
  16. Goldvarg, E., & Johnson-Laird, P. (2001). Naïve causality: A mental model theory of causal meaning and reasoning. Cognitive Science, 25, 565–610. CrossRefGoogle Scholar
  17. Goodwin, G. P., & Johnson-Laird, P. N. (2005). Reasoning about relations. Psychological Review, 112, 468–493. CrossRefPubMedGoogle Scholar
  18. Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant, D., Coenen, A., . . . Chan, P. (2016). psiTurk: An open-source framework for conducting replicable behavioral experiments online. Behavior Research Methods, 48, 829–842.
  19. Hall, N. (2000). Causation and the price of transitivity. Journal of Philosophy, 97, 198–222.CrossRefGoogle Scholar
  20. Hall, N. (2004). Two concepts of causation. In J. Collins, N. Hall, & L. A. Paul (Eds.), Causation and counterfactuals. Cambridge, MA: MIT Press.Google Scholar
  21. Hall, N. (2007). Structural equations and causation. Philosophical Studies, 132, 109–136.CrossRefGoogle Scholar
  22. Halpern, J. Y., & Hitchcock, C. (2014). Graded causation and defaults. British Journal for the Philosophy of Science, 66, 413–457.CrossRefGoogle Scholar
  23. Halpern, J., & Pearl, J. (2005). Causes and explanations: A structural-model approach—Part I: Causes. British Journal for the Philosophy of Science, 56, 843–887.CrossRefGoogle Scholar
  24. Hart, H. L. A., & Honoré, T. (1985). Causation in the law (2nd ed.). Oxford, UK: Oxford University Press, Clarendon Press.Google Scholar
  25. Henne, P., Pinillos, Á., & De Brigard, F. (2017). Cause by omission and norm: Not watering plants. Australasian Journal of Philosophy, 95, 270–283. CrossRefGoogle Scholar
  26. Hilton, D. J., & Erb, H.-P. (1996). Mental models and causal explanation: Judgements of probable cause and explanatory relevance. Thinking & Reasoning, 2, 273–308.CrossRefGoogle Scholar
  27. Hunt, A. (2014). Hamilton jury awards $1.2M in malpractice suit. Cincinnati Enquirer. Retrieved from
  28. Johnson-Laird, P. N. (2006). How we reason. New York, NY: Oxford University Press.Google Scholar
  29. Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Hillsdale, NJ: Erlbaum.Google Scholar
  30. Johnson-Laird, P. N., & Byrne, R. M. J. (2002). Conditionals: A theory of meaning, pragmatics, and inference. Psychological Review, 109, 646–678. CrossRefPubMedGoogle Scholar
  31. Johnson-Laird, P. N., & Khemlani, S. (2017). Mental models and causation. In M. Waldmann (Ed.), Oxford handbook of causal reasoning (pp. xxx–xxx). Oxford, UK: Oxford University Press.Google Scholar
  32. Johnson-Laird, P. N., Khemlani, S., & Goodwin, G. P. (2015). Logic, probability, and human reasoning, Trends in Cognitive Sciences, 19, 201–214.CrossRefPubMedGoogle Scholar
  33. Kahneman, D., & Miller, D. T. (1986). Norm theory: Comparing reality to its alternative. Psychological Review, 93, 75–88.CrossRefGoogle Scholar
  34. Khemlani, S., Barbey, A., & Johnson-Laird, P. N. (2014). Causal reasoning with mental models. Frontiers in Human Neuroscience, 8, 849:1–15. CrossRefGoogle Scholar
  35. Khemlani, S., Byrne, R. M. J., & Johnson-Laird, P. N. (in press). Facts and possibilities: A model-based theory of sentential reasoning. Cognitive Science.Google Scholar
  36. Khemlani, S., Orenes, I., & Johnson-Laird, P. N. (2012). Negation: A theory of its meaning, representation, and use. Journal of Cognitive Psychology, 24, 541–559.CrossRefGoogle Scholar
  37. Lewis, D. (1973). Counterfactuals. Oxford, UK: Blackwell.Google Scholar
  38. McGrath, S. (2005). Causation by omission: A dilemma. Philosophical Studies, 123, 125–148.CrossRefGoogle Scholar
  39. Menzies, P. (2004). Causal models, token causation, and processes. Philosophy of Science, 71, 820–832.CrossRefGoogle Scholar
  40. Menzies, P. (2007). Causation in context. In H. Price & R. Corry (Eds.), Causation, physics, and the constitution of reality (pp. 191–223). Oxford, UK: Oxford University Press.Google Scholar
  41. Mill, J. S. (1874). A system of logic, ratiocinative and inductive: Being a connected view of the principles of evidence and the methods of scientific evidence (8th ed.). New York, NY: Harper. (First edition published 1843)Google Scholar
  42. Orenes, I., Beltrán, D., & Santamaría, C. (2014). How negation is understood: Evidence from the visual world paradigm. Journal of Memory and Language, 74, 36–45.CrossRefGoogle Scholar
  43. Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on amazon mechanical turk. Judgment and Decision Making, 5, 411–419.Google Scholar
  44. Paul, L. A., & Hall, N. (2013). Causation: A user’s guide. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  45. Peirce, C. S. (1958). Collected articles of Charles Sanders Peirce: Vol. 4. Exact logic, the simplest mathematics (C. Hartshorne & P. Weiss, Eds.). Cambridge, MA: Harvard University Press, Belknap Press.Google Scholar
  46. Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton, NJ: Princeton University Press.Google Scholar
  47. Skyrms, B. (1980). Causal necessity. New Haven, CT: Yale University Press.Google Scholar
  48. Sloman, S. A., Barbey, A. K., & Hotaling, J. (2009). A causal model theory of the meaning of cause, enable, and prevent.” Cognitive Science, 33, 21–50.CrossRefPubMedGoogle Scholar
  49. Sloman, S. A., & Lagnado D. (2015). Causality in thought. Annual Review of Psychology, 66, 223–247.CrossRefPubMedGoogle Scholar
  50. Stephan, S., Willemsen, P., & Gerstenberg, T. (2017). Marbles in inaction: Counterfactual simulation and causation by omission. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1132–1137). Austin, TX: Cognitive Science Society. Google Scholar
  51. Strevens, M. (2013). Causality reunified. Erkenntnis, 78, 299–320.CrossRefGoogle Scholar
  52. Williams, E. J. (1949). Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Scientific Research, Series A, 2, 149–168.Google Scholar
  53. Wolff, P. (2007). Representing causation. Journal of Experimental Psychology: General, 136, 82–111.CrossRefGoogle Scholar
  54. Wolff, P., Barbey, A., & Hausknecht, A. (2010). For want of a nail: How absences cause events. Journal of Experimental Psychology: General, 139, 191–221. CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection  2018

Authors and Affiliations

  • Sangeet Khemlani
    • 1
    Email author
  • Christina Wasylyshyn
    • 1
  • Gordon Briggs
    • 1
  • Paul Bello
    • 1
  1. 1.Navy Center for Applied Research in Artificial IntelligenceNaval Research LaboratoryWashingtonUSA

Personalised recommendations