Memory & Cognition

, Volume 46, Issue 7, pp 1076–1092 | Cite as

Individual differences in musical training and executive functions: A latent variable approach

  • Brooke M. Okada
  • L. Robert Slevc


Learning and performing music draw on a host of cognitive abilities, and previous research has postulated that musicians might have advantages in related cognitive processes. One such aspect of cognition that may be related to musical training is executive functions (EFs), a set of top-down processes that regulate behavior and cognition according to task demands. Previous studies investigating the link between musical training and EFs have yielded mixed results and are difficult to compare. In part, this is because most studies have looked at only one specific cognitive process, and even studies looking at the same process have used different experimental tasks. Furthermore, most correlational studies have used different “musician” and “non-musician” categorizations for their comparisons, so generalizing the findings is difficult. The present study provides a more comprehensive assessment of how individual differences in musical training relate to latent measures of three separable aspects of EFs. We administered a well-validated EF battery containing multiple tasks tapping the EF components of inhibition, shifting, and working memory updating (Friedman et al. in Journal of Experimental Psychology: General, 137, 201–225, 2008), as well as a comprehensive, continuous measure of musical training and sophistication (Müllensiefen et al., in PLoS ONE, 9, e89642, 2014). Musical training correlated with some individual EF tasks involving inhibition and working memory updating, but not with individual tasks involving shifting. However, musical training only predicted the latent variable of working memory updating, but not the latent variables of inhibition or shifting after controlling for IQ, socioeconomic status, and handedness. Although these data are correlational, they nonetheless suggest that musical experience places particularly strong demands specifically on working memory updating processes.


Musical training Executive functions Latent variable analysis 


  1. Adler, N., & Stewart, J. (2007). The MacArthur scale of subjective social status. MacArthur Research Network on SES & Health. Retrieved from
  2. Amer, T., Kalender, B., Hasher, L., Trehub, S. E., & Wong, Y. (2013). Do older professional musicians have cognitive advantages? PLoS ONE, 8, e71630:1–8. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bates, D., Maechler, M., Bolker, B., & Walker S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. CrossRefGoogle Scholar
  4. Benz, S., Sellaro, R., Hommel, B., & Colzato, L. S. (2015). Music makes the world go round: The impact of musical training on non-musical cognitive functions—A review. Frontiers in Psychology, 6, 2023. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beratis, I. N., Rabavilas, A. D., Kyprianou, M., Papadimitriou, G. N., & Papageorgiou, C. (2013). Investigation of the link between higher order cognitive functions and handedness. Journal of Clinical and Experimental Neuropsychology, 35, 393–403.CrossRefGoogle Scholar
  6. Bialystok E., Craik, F., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16, 240–250.CrossRefGoogle Scholar
  7. Bialystok, E., & DePape, A. M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35, 565–574.PubMedPubMedCentralGoogle Scholar
  8. Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013). The pervasive problem with placebos in psychology: Why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8, 445–454. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bugos, J. A., & DeMarie, D. (2017). The effects of a short-term music program on preschool children’s executive functions. Psychology of Music, 45, 855–867. CrossRefGoogle Scholar
  10. Bugos, J. A., & Kochar, S. (2017). Efficacy of a short-term intense piano training program for cognitive aging: A pilot study. Musicae Scientiae, 21, 137–150. CrossRefGoogle Scholar
  11. Bugos, J. A., Perlstein, W. M., McCrae, C. S., Brophy, T. S., & Bedenbaugh, P. H. (2007). Individualized piano instruction enhances executive functioning and working memory in older adults. Aging and Mental Health, 11, 464–71. CrossRefGoogle Scholar
  12. Cattell, R. B., & Cattell, A. K. S. (1960). Cattell Culture Fair Intelligence Test: A measure of “g.” Indianapolis, IN: Bobbs-Merrill.Google Scholar
  13. Chaffin, R., Lisboa, T., Logan, T., & Begosh, K. T. (2009). Preparing for memorized cello performance: The role of performance cues. Psychology of Music, 38, 3–30.CrossRefGoogle Scholar
  14. Collins, F. S., & Fleming, R. (2017). An NIH–Kennedy Center initiative to explore music and the mind. Journal of the American Medical Association, 317, 2470–2471.CrossRefGoogle Scholar
  15. Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163–183. CrossRefGoogle Scholar
  16. Corrigall, K. A., Schellenberg, E. G., & Misura, N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 222:1–10. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N. (2009). On the bilingual advantage in conflict processing: Now you see it, now you don’t. Cognition, 113, 135–149. CrossRefPubMedPubMedCentralGoogle Scholar
  18. deBruin, A., Treccani, B., & Della Sala, S. (2015). Cognitive advantage in bilingualism: An example of publication bias? Psychological Science, 26, 99–107.CrossRefGoogle Scholar
  19. DeCoster, J., Iselin, A. R., & Gallucci, M. (2009). A conceptual and empirical examination of justifications for dichotomization. Psychological Methods, 14, 349–366.CrossRefGoogle Scholar
  20. Degé, F., Kubicek, C., & Schwarzer, G. (2011). Music lessons and intelligence: A relation mediated by executive functions. Music Perception, 29, 195–201.CrossRefGoogle Scholar
  21. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.CrossRefGoogle Scholar
  22. Diamond, A., Barnett, W. S., Thomas, J., & Munro, S. (2007). Preschool program improves cognitive control. Science, 318, 1387–1388. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dougherty, M. R., Hamovitz, T., & Tidwell, J. W. (2016). Reevaluating the effectiveness of n-back training on transfer through the Bayesian lens: Support for the null. Psychonomic Bulletin & Review, 23, 306–316. CrossRefGoogle Scholar
  24. Drake, C., & Palmer, C. (2000). Skill acquisition in music performance: Relations between planning and temporal control. Cognition, 74, 1–32. CrossRefGoogle Scholar
  25. Elpus, K. (2013). Is it the music or is it selection bias? A nationwide analysis of music and non-music students’ SAT scores. Journal of Research in Music Education, 61, 175–194.CrossRefGoogle Scholar
  26. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128, 309–331. CrossRefGoogle Scholar
  27. Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172–179.CrossRefGoogle Scholar
  28. Friedman, N. P., Miyake, A., Robinson, J. L., & Hewitt, J. K. (2011). Developmental trajectories in toddlers’ self-restraint predict individual differences in executive functions 14 years later: A behavioral genetic analysis. Developmental Psychology, 47, 1410–1430. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137, 201–225. CrossRefGoogle Scholar
  30. Furneaux, S., & Land, M. F. (1999). The effects of skill on the eye-hand span during musical sight-reading. Proceedings of the Royal Society B, 266, 2435–2440. CrossRefGoogle Scholar
  31. Good, A., Choma, B., & Russo, F. A. (2017). Movement synchrony influences intergroup relations in a minimal groups paradigm. Basic and Applied Social Psychology, 39, 213–238. CrossRefGoogle Scholar
  32. Goolsby, T. W. (1994). Eye movement in music reading: Effects of reading ability, notational complexity, and encounters. Music Perception, 12, 77–96.CrossRefGoogle Scholar
  33. Gordon, E. E. (1989). Advanced measures of music audiation. Chicago, IL: Riverside.Google Scholar
  34. Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Sciences, 13, 65–73.CrossRefGoogle Scholar
  35. Hanna-Pladdy, B., & MacKay, A. (2011). The relation between instrumental musical activity and cognitive aging. Neuropsychology, 25, 378–386. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hannon, E. E., & Trainor, L. J. (2007). Music acquisition: Effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11, 466–472.CrossRefGoogle Scholar
  37. Hansen, M., Wallentin, M., & Vuust, P. (2012). Working memory and musical competence of musicians and non-musicians. Psychology of Music, 41, 779–793.CrossRefGoogle Scholar
  38. Holochwost, S. J., Propper, C. B., Wolf, D. P., Willoughby, M. T., Fisher, K. R., Kolacz, J., … Jaffee, S. R. (2017). Music education, academic achievement, and executive functions. Psychology of Aesthetics, Creativity, and the Arts, 11, 147–166.CrossRefGoogle Scholar
  39. Ito, T. A., Friedman, N. P., Bartholow, B. D., Correll, J., Loersch, C., Altamirano, L. J., & Miyake, A. (2015). Toward a comprehensive understanding of executive cognitive function in implicit racial bias. Journal of Personality and Social Psychology, 108, 187–218.CrossRefGoogle Scholar
  40. Jentzsch, I., Mkrtchian, A., & Kansal, N. (2014). Improved effectiveness of performance monitoring in amateur instrumental musicians. Neuropsychologia, 52, 117–124.CrossRefGoogle Scholar
  41. Kahneman, D. (1965). Control of spurious association and the reliability of the controlled variable. Psychological Bulletin, 64, 326–329. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kaushal, N., Magnuson, D., & Waldfogel, J. (2011). How is family income related to investments in children’s learning? In G. J. Duncan & R. J. Murnane (Eds.), Whither opportunity? Rising inequality, schools, and children’s life chances (pp. 187–206). New York, NY: Russell Sage Foundation & Spencer Foundation.Google Scholar
  43. Kirschner, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31, 354–364. CrossRefGoogle Scholar
  44. Kopiez, R., Galley, N., & Lee, J. I. (2006). The advantage of a decreasing right-hand superiority: The influence of laterality on a selected musical skill (sight reading achievement). Neuropsychologia, 44, 1079–1087.CrossRefGoogle Scholar
  45. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2016). lmerTest: Tests in linear mixed effect models (R package version 2.0-33). Retrieved from
  46. Lashley, K. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 112–136). New York, NY: Wiley.Google Scholar
  47. Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 59–80.CrossRefGoogle Scholar
  48. Loehr, J. D., Kourtis, D., Vesper, C., Sebanz, N., & Knoblich, G. (2013). Monitoring individual and joint action outcomes in duet music performance. Journal of Cognitive Neuroscience, 25, 1049–1061. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Loehr, J. D., & Palmer, C. (2011). Temporal coordination between performing musicians. Quarterly Journal of Experimental Psychology, 64, 2153–2167. CrossRefGoogle Scholar
  50. Logan, G. D. (1994). On the ability to inhibit thought and action: A users’ guide to the stop signal paradigm. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and language. San Diego, CA: Academic Press.Google Scholar
  51. Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 45–54.CrossRefGoogle Scholar
  52. MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 19–40. CrossRefGoogle Scholar
  53. Mayr, U., & Kliegl, R. (2000). Task-set switching and long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1124–1140. CrossRefGoogle Scholar
  54. Mehr, S. A., Schachner, A., Katz, R. C., & Spelke, E. S. (2013). Two randomized trials provide no consistent evidence for nonmusical cognitive benefits of brief preschool music enrichment. PLoS ONE, 8, e82007:1–12. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Meinz, E. J., & Hambrick, D. Z. (2010). Deliberate practice is necessary but not sufficient to explain individual differences in piano sight-reading skill: The role of working memory capacity. Psychological Science, 21, 914–919. CrossRefGoogle Scholar
  56. Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49, 270–291. CrossRefGoogle Scholar
  57. Miyake, A., Emerson, M. J., Padilla, F., & Ahn, J.-C. (2004). Inner speech as a retrieval aid for task goals: The effects of cue type and articulatory suppression in the random task cuing paradigm. Acta Psychologica, 115, 123–142. CrossRefGoogle Scholar
  58. Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 8–14. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Moore, G. P., & Chen, J. (2010). Timings and interactions of skilled musicians. Biological Cybernetics, 103, 401–414. CrossRefGoogle Scholar
  61. Moradzadeh, L., Blumenthal, G., & Wiseheart, M. (2014). Musical training, bilingualism, and executive function: A closer look at task switching and dual-task performance. Cognitive Science, 39, 992–1020. CrossRefGoogle Scholar
  62. Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22, 1425–1433. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Moreno, S., & Bidelman, G. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 84–97.CrossRefGoogle Scholar
  64. Moreno, S., & Farzan, F. (2015). Music training and inhibitory control: A multidimensional model. Annals of the New York Academy of Sciences, 1337, 147–152.CrossRefGoogle Scholar
  65. Morris, N., & Jones, D. M. (1990). Memory updating in working memory: The role of the central executive. British Journal of Psychology, 81, 111–121.CrossRefGoogle Scholar
  66. Mosing, M. A., Madison, G., Pedersen, N. L., & Ullén, F. (2016). Investigating cognitive transfer within the framework of music practice: Genetic pleiotropy rather than causality. Developmental Science, 19, 504–512.CrossRefGoogle Scholar
  67. Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS ONE, 9, e89642:1–23. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Norton, A., Winner, E., Cronin, K., Overy, K., Lee, D. J., & Schlaug, G. (2005). Are there pre-existing neural, cognitive, or motoric markers for musical ability? Brain and Cognition, 59, 124–134. CrossRefGoogle Scholar
  69. Oechslin, M. S., Van De Ville, D., Lazeyras, F., Hauert, C. A., & James, C. E. (2013). Degree of musical expertise modulates higher order brain functioning. Cerebral Cortex, 23, 2213–2224.CrossRefGoogle Scholar
  70. Okada, B. M., & Slevc, L. R. (2018). Musical training: Contributions to executive function. In M. Bunting, J. Novick, M. Dougherty, & R. W. Engle (Eds.), An integrative approach to cognitive and working memory training: Perspectives from psychology, neuroscience, and human development. New York: Oxford University Press.
  71. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Pallesen, K. J., Brattico, E., Bailey, C. J., Korvenoja, A., Koivisto, J., Gjedde, A., & Carlson, S. (2010). Cognitive control in auditory working memory is enhanced in musicians. PLoS ONE, 5, e11120:1–12. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Palmer, C. (1997). Music performance. Annual Review of Psychology, 48, 115–138.CrossRefGoogle Scholar
  74. Palmer, C. (2013). Music performance: Movement and coordination. In D. Deutsch (Ed.), The psychology of music (3rd ed., pp. 405–422). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  75. Palmer, C., & Pfordresher, P. Q. (2003). Incremental planning in sequence production. Psychological Review, 110, 681–712. CrossRefGoogle Scholar
  76. Pfordresher, P. Q., Palmer, C., & Jungers, M. K. (2007). Speed, accuracy, and serial order in sequence production. Cognitive Science, 31, 63–98. CrossRefGoogle Scholar
  77. Pietschnig, J., Voracek, M., & Formann, A. K. (2010). Mozart effect–Schmozart effect: A meta-analysis. Intelligence, 38, 314–323.CrossRefGoogle Scholar
  78. R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from Scholar
  79. Reitan, R. M., & Wolfson, D. (1985). The Halstead–Reitan Neuropsychological Test Battery: Theory and clinical interpretation (Vol. 4). Tucson, AZ: Reitan Neuropsychology.Google Scholar
  80. Roberts, R. J., Hager, L. D., & Heron, C. (1994). Prefrontal cognitive processes: Working memory and inhibition in the antisaccade task. Journal of Experimental Psychology: General, 123, 374–393. CrossRefGoogle Scholar
  81. Roden, I., Grube, D., Bongard, S., & Kreutz, G. (2014). Does music training enhance working memory performance? Findings from a quasi-experimental longitudinal study. Psychology of Music, 42, 284–298. CrossRefGoogle Scholar
  82. Rogers, R. D., & Monsell, S. (1995). Costs of a predictible switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231. CrossRefGoogle Scholar
  83. Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1–36.CrossRefGoogle Scholar
  84. Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15, 511–514. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Schellenberg, E. G. (2006). Long-term positive associations between music lessons and IQ. Journal of Educational Psychology, 98, 457–468. CrossRefGoogle Scholar
  86. Schellenberg, E. G. (2011). Examining the association between music lessons and intelligence. British Journal of Psychology, 102, 283–302.CrossRefGoogle Scholar
  87. Schellenberg, E. G. (2015). Music training and speech perception: A gene–environment interaction. Annals of the New York Academy of Sciences, 1337, 170–177. CrossRefGoogle Scholar
  88. Schellenberg, E. G., & Moreno, S. (2009). Music lessons, pitch processing, and g. Psychology of Music, 38, 209–221. CrossRefGoogle Scholar
  89. Schellenberg, E. G., & Weiss, M. W. (2013). Music and cognitive abilities. In D. Deutsch (Ed.), The psychology of music (pp. 499–550). London, UK: Academic Press.CrossRefGoogle Scholar
  90. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin.Google Scholar
  91. Shipstead, Z., Lindsey, D. R., Marshall, R. L., & Engle, R. W. (2014). The mechanisms of working memory capacity: Primary memory, secondary memory, and attention control. Journal of Memory and Language, 72, 116–141.CrossRefGoogle Scholar
  92. Singh-Manoux, A., Marmot, M. G., & Adler, N. E. (2005). Does subjective social status predict health and change in health status better than objective status? Psychosomatic Medicine, 67, 855–861.CrossRefGoogle Scholar
  93. Slater, J., Azem, A., Nicol, T., Swedenborg, B., & Kraus, N. (2017). Variations on the theme of musical expertise: Cognitive and sensory processing in percussionists, vocalists and non-musicians. European Journal of Neuroscience, 45, 952–963.CrossRefGoogle Scholar
  94. Slevc, L. R., Davey, N., Buschkuehl, M., & Jaeggi, S. M. (2016). Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition, 152, 199–211.CrossRefGoogle Scholar
  95. Slevc, L. R., & Okada, B. M. (2015). Processing structure in language and music: A case for shared reliance on cognitive control. Psychonomic Bulletin & Review, 22, 637–652. CrossRefGoogle Scholar
  96. Southgate, D. E., & Roscigno, V. J. (2009). The impact of music on childhood and adolescent achievement. Social Science Quarterly, 90, 4–21.CrossRefGoogle Scholar
  97. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. CrossRefGoogle Scholar
  98. Talamini, F., Carretti, B., & Grassi, M. (2016). The working memory of musicians and nonmusicians. Music Perception, 34, 183–191.CrossRefGoogle Scholar
  99. Travis, F., Harung, H. S., & Lagrosen, Y. (2011). Moral development, executive functioning, peak experiences and brain patterns in professional and amateur classical musicians: Interpreted in light of a unified theory of performance. Consciousness and Cognition, 20, 1256–1264.CrossRefGoogle Scholar
  100. Verbruggen, F., Logan, G. D., & Stevens, M. A. (2008). STOP-IT: Windows executable software for the stop-signal paradigm. Behavior Research Methods, 40, 479–483. CrossRefGoogle Scholar
  101. von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58.CrossRefGoogle Scholar
  102. Werner, P. D., Swope, A. J., & Heide, F. J. (2006). The music experience questionnaire: Development and correlates. Journal of Psychology, 140, 329–345.CrossRefGoogle Scholar
  103. Westfall, J., & Yarkoni, T. (2016). Statistically controlling for confounding constructs is harder than you think. PLoS ONE, e152719. 1–22. CrossRefGoogle Scholar
  104. Yntema, D. B. (1963). Keeping track of several things at once. Human Factors, 5, 7–17.CrossRefGoogle Scholar
  105. Zuk, J., Benjamin, C., Kenyon, A., & Gaab, N. (2014). Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLoS ONE, 9, e99868:1–14. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of MarylandCollege ParkUSA

Personalised recommendations