Advertisement

Memory & Cognition

, Volume 46, Issue 6, pp 909–922 | Cite as

Sex differences in navigation strategy and efficiency

  • Alexander P. Boone
  • Xinyi Gong
  • Mary Hegarty
Article

Abstract

Research on human navigation has indicated that males and females differ in self-reported navigation strategy as well as objective measures of navigation efficiency. In two experiments, we investigated sex differences in navigation strategy and efficiency using an objective measure of strategy, the dual-solution paradigm (DSP; Marchette, Bakker, & Shelton, 2011). Although navigation by shortcuts and learned routes were the primary strategies used in both experiments, as in previous research on the DSP, individuals also utilized route reversals and sometimes found the goal location as a result of wandering. Importantly, sex differences were found in measures of both route selection and navigation efficiency. In particular, males were more likely to take shortcuts and reached their goal location faster than females, while females were more likely to follow learned routes and wander. Self-report measures of strategy were only weakly correlated with objective measures of strategy, casting doubt on their usefulness. This research indicates that the sex difference in navigation efficiency is large, and only partially related to an individual’s navigation strategy as measured by the dual-solution paradigm.

Keywords

Navigation Strategy Efficiency Sex differences 

References

  1. Allen, G. L., Kirasic, K. C., Rashotte, M. A., & Haun, D. B. (2004). Aging and path integration skill: Kinesthetic and vestibular contributions to wayfinding. Perception & Psychophysics, 66(1), 170–179.CrossRefGoogle Scholar
  2. Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behavioral Brain Research, 93(1), 185–190.CrossRefGoogle Scholar
  3. Astur, R. S., Tropp, J., Sava, S., Constable, R. T., & Markus, E. J. (2004). Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behavioural Brain Research, 151(1), 103–115.CrossRefPubMedGoogle Scholar
  4. Chai, X. J., & Jacobs, L. F. (2009). Sex differences in directional cue use in a virtual landscape. Behavioral Neuroscience, 123(2), 276.CrossRefPubMedGoogle Scholar
  5. Chance, S. S., Gaunet, F., Beall, A. C., & Loomis, J. M. (1998). Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence, 7(2), 168–178.Google Scholar
  6. Chrastil, E. R., & Warren, W. H. (2015). Active and passive spatial learning in human navigation: Acquisition of graph knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 1162–1178.PubMedGoogle Scholar
  7. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.CrossRefPubMedGoogle Scholar
  8. Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24(3), 329–340.CrossRefGoogle Scholar
  9. Cutmore, T. R., Hine, T. J., Maberly, K. J., Langford, N. M., & Hawgood, G. (2000). Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53(2), 223–249.CrossRefGoogle Scholar
  10. Foo, P., Warren, W. H., Duchon, A., & Tarr, M. J. (2005). Do humans integrate routes into a cognitive map? Map-versus landmark-based navigation of novel shortcuts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(2), 195-215.Google Scholar
  11. Furman, A. J., Clements-Stephens, A. M., Marchette, S. A., & Shelton, A. L. (2014). Persistent and stable biases in spatial learning mechanisms predict navigational style. Cognitive, Affective, & Behavioral Neuroscience, 14(4), 1375–1391.CrossRefGoogle Scholar
  12. Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404–408.CrossRefPubMedGoogle Scholar
  13. Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176.CrossRefGoogle Scholar
  14. Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425–447.CrossRefGoogle Scholar
  15. Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191.CrossRefGoogle Scholar
  16. Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. The Journal of Neuroscience, 23(13), 5945–5952.CrossRefPubMedGoogle Scholar
  17. Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129.CrossRefPubMedGoogle Scholar
  18. Kearns, M. J., Warren, W. H., Duchon, A. P., & Tarr, M. J. (2002). Path integration from optic flow and body senses in a homing task. Perception, 31(3), 349–374.CrossRefPubMedGoogle Scholar
  19. Labate, E., Pazzaglia, F., & Hegarty, M. (2014). What working memory subcomponents are needed in the acquisition of survey knowledge? Evidence from direction estimation and shortcut tasks. Journal of Environmental Psychology, 37, 73–79.CrossRefGoogle Scholar
  20. Lambrey, S., & Berthoz, A. (2007). Gender differences in the use of external landmarks versus spatial representations updated by self-motion. Journal of Integrative Neuroscience, 6(03), 379–401.CrossRefPubMedGoogle Scholar
  21. Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11/12), 765-779.CrossRefGoogle Scholar
  22. Lawton, C. A. (1996). Strategies for indoor wayfinding: The role of orientation. Journal of Environmental Psychology, 16(2), 137-145.CrossRefGoogle Scholar
  23. Lawton, C. A., Charleston, S. I., & Zieles, A. S. (1996). Individual-and gender-related differences in indoor wayfinding. Environment and Behavior, 28(2), 204-219.CrossRefGoogle Scholar
  24. Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47(9/10), 389-401.CrossRefGoogle Scholar
  25. Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091–1101.CrossRefPubMedGoogle Scholar
  26. Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive mappers to creatures of habit: differential engagement of place and response learning mechanisms predicts human navigational behavior. The Journal of Neuroscience, 31(43), 15264–15268.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “virtual” maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19(2), 73–87.CrossRefGoogle Scholar
  28. Money, J., Alexander, D., & Walker, H. T. (1965). A standardized road-map test of direction sense: Manual. Baltimore, MD: Johns Hopkins Press.Google Scholar
  29. Montello, D. R., Lovelace, K. L., Golledge, R. G., & Self, C. M. (1999). Sex-related differences and similarities in geographic and environmental spatial abilities. Annals of the Association of American Geographers, 89(3), 515–534.CrossRefGoogle Scholar
  30. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford, UK: Clarendon Press.Google Scholar
  31. Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65(1), 65–72.CrossRefPubMedGoogle Scholar
  32. Pazzaglia, F., Cornoldi, C., & De Beni, R. (2000). Differenze individuali nella rappresentazione dello spazio e nell’abilita di orientamento: Presentazione di un questionario autovalutativo [Individual differences in the representation of space and ability to orientate: Presentation of a self-assessment questionnaire]. Giornale Italiano Di Psicologia, 27(3), 627–650.Google Scholar
  33. Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741–750.CrossRefGoogle Scholar
  34. Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6(4), 351–360.CrossRefPubMedGoogle Scholar
  35. Saucier, D. M., Green, S. M., Leason, J., MacFadden, A., Bell, S., & Elias, L. J. (2002). Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies?. Behavioral Neuroscience, 116(3), 403-410.CrossRefPubMedGoogle Scholar
  36. Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515–528.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sholl, M. J., Acacio, J. C., Makar, R. O., & Leon, C. (2000). The relation of sex and sense of direction to spatial orientation in an unfamiliar environment. Journal of Environmental Psychology, 20(1), 17–28.CrossRefGoogle Scholar
  38. Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9–55.CrossRefPubMedGoogle Scholar
  39. Silverman, I., Choi, J., Mackewn, A., Fisher, M., Moro, J., & Olshansky, E. (2000). Evolved mechanisms underlying wayfinding: Further studies on the hunter-gatherer theory of spatial sex differences. Evolution and Human Behavior, 21(3), 201–213.CrossRefPubMedGoogle Scholar
  40. Steck, S. D., & Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence: Teleoperators and Virtual Environments, 9(1), 69–83.CrossRefGoogle Scholar
  41. Tarampi, M. R., Heydari, N., & Hegarty, M. (2016). A tale of two types of perspective taking: Sex differences in spatial ability. Psychological Science, 27(11), 1507–1516.CrossRefPubMedGoogle Scholar
  42. Waller, D. (2000). Individual differences in spatial learning from computer-simulated environments. Journal of Experimental Psychology: Applied, 6(4), 307–321.PubMedGoogle Scholar
  43. Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 768–785.PubMedGoogle Scholar
  44. Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669–682.PubMedGoogle Scholar
  45. Woollett, K., & Maguire, E. A. (2011). Acquiring “the Knowledge” of London’s layout drives structural brain changes. Current Biology, 21(24), 2109–2114.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of Psychological and Brain SciencesUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations