Advertisement

Memory & Cognition

, Volume 46, Issue 5, pp 796–808 | Cite as

The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation

  • Lea M. BartschEmail author
  • Henrik Singmann
  • Klaus Oberauer
Article

Abstract

Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.

Keywords

Working memory Long-term memory Refreshing Elaboration Bayesian generalized linear mixed models 

References

  1. Baddeley, A. D. (1986). Working memory. Oxford, UK: Oxford University Press.Google Scholar
  2. Bailey, H., Dunlosky, J., & Hertzog, C. (2009). Does differential strategy use account for age-related deficits in working-memory performance? Psychology and Aging, 24(1), 82–92.  https://doi.org/10.1037/a0014078 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bailey, H., Dunlosky, J., & Kane, M. J. (2008). Why does working memory span predict complex cognition? Testing the strategy affordance hypothesis. Memory & Cognition, 36(8), 1383–1390.  https://doi.org/10.3758/MC.36.8.1383 CrossRefGoogle Scholar
  4. Bailey, H., Dunlosky, J., & Kane, M. J. (2011). Contribution of strategy use to performance on complex and simple span tasks. Memory & Cognition, 39(3), 447–461.  https://doi.org/10.3758/s13421-010-0034-3 CrossRefGoogle Scholar
  5. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278.  https://doi.org/10.1016/j.jml.2012.11.001 CrossRefGoogle Scholar
  6. Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time Constraints and Resource Sharing in Adults’ Working Memory Spans. Journal of Experimental Psychology: General, 133(1), 83–100.  https://doi.org/10.1037/0096-3445.133.1.83 CrossRefGoogle Scholar
  7. Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and cognitive load in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 570–585.  https://doi.org/10.1037/0278-7393.33.3.570 PubMedGoogle Scholar
  8. Barrouillet, P., & Camos, V. (2007). The time-based resource-sharing model of working memory. In N. Osaka, R. H. Logie, & M. D’Esposito (Eds.), The cognitive neuroscience of working memory (pp. 59–80).  https://doi.org/10.1093/acprof:oso/9780198570394.003.0004 CrossRefGoogle Scholar
  9. Camos, V., Lagner, P., & Barrouillet, P. (2009). Two maintenance mechanisms of verbal information in working memory. Journal of Memory and Language, 61(3), 457–469.  https://doi.org/10.1016/j.jml.2009.06.002 CrossRefGoogle Scholar
  10. Camos, V., Mora, G., & Barrouillet, P. (2013). Phonological similarity effect in complex span task. The Quarterly Journal of Experimental Psychology, 66(10), 1927–1950.  https://doi.org/10.1080/17470218.2013.768275 CrossRefPubMedGoogle Scholar
  11. Camos, V., & Portrat, S. (2015). The impact of cognitive load on delayed recall. Psychonomic Bulletin & Review, 22(4), 1029–1034.  https://doi.org/10.3758/s13423-014-0772-5 CrossRefGoogle Scholar
  12. Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,. .. Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1).  https://doi.org/10.18637/jss.v076.i01
  13. Cowan, N. (1995). Attention and memory: An integrated framework. New York, NY, Oxford University Press.Google Scholar
  14. Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101).  https://doi.org/10.1017/CBO9781139174909
  15. Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323–338.  https://doi.org/10.1016/S0079-6123(07)00020-9 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671–684.  https://doi.org/10.1016/S0022-5371(72)80001-X CrossRefGoogle Scholar
  17. Craik, F. I. M., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology: General, 104(3), 268–294.  https://doi.org/10.1037//0096-3445.104.3.268 CrossRefGoogle Scholar
  18. Dunlosky, J., & Hertzog, C. (2001). Measuring strategy production during associative learning: The relative utility of concurrent versus retrospective reports. Memory & Cognition, 29(2), 247–253.  https://doi.org/10.3758/BF03194918 CrossRefGoogle Scholar
  19. Dunlosky, J., & Kane, M. J. (2007). The contributions of strategy use to working memory span: A comparison of strategy assessment methods. The Quarterly Journal of Experimental Psychology, 60(9), 1227–1245.  https://doi.org/10.1080/17470210600926075 CrossRefPubMedGoogle Scholar
  20. Gallo, D. A., Meadow, N. G., Johnson, E. L., & Foster, K. T. (2008). Deep levels of processing elicit a distinctiveness heuristic: Evidence from the criterial recollection task. Journal of Memory and Language, 58(4), 1095–1111.  https://doi.org/10.1016/j.jml.2007.12.001 CrossRefGoogle Scholar
  21. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). New York, NY: Chapman & Hall/CRC.Google Scholar
  22. Greene, R. L. (1987). Effects of maintenance rehearsal on human memory. Psychological Bulletin, 102(3), 403–413.  https://doi.org/10.1037/0033-2909.102.3.403 CrossRefGoogle Scholar
  23. Hudjetz, A., & Oberauer, K. (2007). The effects of processing time and processing rate on forgetting in working memory: Testing four models of the complex span paradigm. Memory & Cognition, 35(7), 1675–1684.  https://doi.org/10.3758/BF03193501 CrossRefGoogle Scholar
  24. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446.  https://doi.org/10.1016/j.jml.2007.11.007 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Johnson, M. K. (1992). MEM: Mechanisms of recollection. Journal of Cognitive Neuroscience, 4(3), 268–280.CrossRefPubMedGoogle Scholar
  26. Johnson, M. K., Mitchell, K. J., Raye, C. L., & Greene, E. J. (2004). An age-related deficit in prefrontal cortical function associated with refreshing information. Psychological Science, 15(2), 127–32.  https://doi.org/10.1016/j.neuroscience.2008.09.014 CrossRefPubMedGoogle Scholar
  27. Johnson, M. K., Reeder, J. A., Raye, C. L., & Mitchell, K. J. (2002). Second thoughts versus second looks: An age-related deficit in reflectively refreshing just-activated information. Psychological Science: A Journal of the American Psychological Society/APS, 13(1), 64–67.  https://doi.org/10.1111/1467-9280.00411 CrossRefGoogle Scholar
  28. Jonker, T. R., & Macleod, C. M. (2015). Disruption of relational processing underlies poor memory for order. Journal of Experimental Psychology : Learning, Memory, and Cognition, 41(3), 831–840.  https://doi.org/10.1037/xlm0000069 PubMedGoogle Scholar
  29. Kaakinen, J. K., & Hyönä, J. (2007). Strategy use in the reading span test: An analysis of eye movements and reported encoding strategies. Memory, 15(6), 634–646.  https://doi.org/10.1080/09658210701457096 CrossRefPubMedGoogle Scholar
  30. Klatsky, R. (1988). Theories of information processing and theories of aging. In L. Light & D. M. Burke (Eds.), Language, memory, and aging (pp. 1–16). New York, NY: Cambridge University Press.Google Scholar
  31. Loaiza, V. M., Duperreault, K. A., Rhodes, M. G., & McCabe, D. P. (2015). Long-term semantic representations moderate the effect of attentional refreshing on episodic memory. Psychonomic Bulletin & Review, 22(1), 274–280.  https://doi.org/10.3758/s13423-014-0673-7 CrossRefGoogle Scholar
  32. Loaiza, V. M., & McCabe, D. P. (2012a). Temporal–contextual processing in working memory: Evidence from delayed cued recall and delayed free recall tests. Memory & Cognition, 40(2), 191–203.  https://doi.org/10.3758/s13421-011-0148-2
  33. Loaiza, V. M., & McCabe, D. P. (2012b). The influence of aging on attentional refreshing and articulatory rehearsal during working memory on later episodic memory performance. Neuropsychology, Development, and Cognition: Section B, Aging, Neuropsychology and Cognition, 20(4)471–493.  https://doi.org/10.1080/13825585.2012.738289 CrossRefGoogle Scholar
  34. Loaiza, V. M., Rhodes, M. G., & Anglin, J. (2013). The influence of age-related differences in prior knowledge and attentional refreshing opportunities on episodic memory. The Journals of Gerontology: Series B, Psychological Sciences and Social Sciences, 70(5), 729–736.  https://doi.org/10.1093/geronb/gbt119 CrossRefGoogle Scholar
  35. McCabe, D. P. (2008). The role of covert retrieval in working memory span tasks: Evidence from delayed recall tests. Journal of Memory and Language, 58(2), 480–494.  https://doi.org/10.1016/j.jml.2007.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mora, G., & Camos, V. (2013). Two systems of maintenance in verbal working memory: Evidence from the word length effect. PLOS ONE, 8(7).  https://doi.org/10.1371/journal.pone.0070026
  37. Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E.-J. (2016). The fallacy of placing confidence in confidence intervals. Psychonomic Bulletin & Review, 23(1), 103–123.  https://doi.org/10.3758/s13423-015-0947-8 CrossRefGoogle Scholar
  38. Morrison, A. B., Rosenbaum, G. M., Fair, D., & Chein, J. M. (2016). Variation in strategy use across measures of verbal working memory. Memory & Cognition, 44(6), 922–936.  https://doi.org/10.3758/s13421-016-0608-9 CrossRefGoogle Scholar
  39. Raye, C. L., Johnson, M. K., Mitchell, K. J., Reeder, J. A., & Greene, E. J. (2002). Neuroimaging a single thought: Dorsolateral PFC activity associated with refreshing just-activated information. NeuroImage, 15(2), 447–453.  https://doi.org/10.1006/nimg.2001.0983 CrossRefPubMedGoogle Scholar
  40. Raye, C. L., Johnson, M. K., Mitchell, K. J., Greene, E. J., & Johnson, M. R. (2005). Special Issue: Original Article Refreshing : a Minimal Executive Function. Control, 43(1), 135–145.  https://doi.org/10.1016/S0010-9452(08)70451-9
  41. Raye, C. L., Johnson, M. R. M. K., Mitchell, K. J., Greene, E. J., & Johnson, M. R. M. K. (2007). Refreshing: A minimal executive function. Cortex, 43(1), 135–145.  https://doi.org/10.1016/S0010-9452(08)70451-9 CrossRefPubMedGoogle Scholar
  42. Roediger, H. L., III, & Karpicke, J. D. (2006). The power of testing memory: Basic research and implications for educational. Perspectives on Psychological Science, 1(3), 181–210.CrossRefPubMedGoogle Scholar
  43. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374.  https://doi.org/10.1016/j.jmp.2012.08.001 CrossRefGoogle Scholar
  44. Schielzeth, H., & Forstmeier, W. (2009). Conclusions beyond support: Overconfident estimates in mixed models. Behavioral Ecology, 20(2), 416–420.  https://doi.org/10.1093/beheco/arn145 CrossRefPubMedGoogle Scholar
  45. Souza, A. S., & Oberauer, K. (2017a). The contributions of visual and central attention to visual working memory. Attention, Perception, & Psychophysics.  https://doi.org/10.3758/s13414-017-1357-y
  46. Souza, A. S., & Oberauer, K. (2017b). Time to process information in working memory improves episodic memory. Journal of Memory and Language, 96, 155–167.  https://doi.org/10.1016/j.jml.2017.07.002 CrossRefGoogle Scholar
  47. Souza, A. S., Rerko, L., & Oberauer, K. (2015). Refreshing memory traces: Thinking of an item improves retrieval from visual working memory. Annals of the New York Academy of Sciences, 1339(1), 20–31.  https://doi.org/10.1111/nyas.12603 CrossRefPubMedGoogle Scholar
  48. Stan Development Team. (2017). Stan Modeling Language: User’s guide and feference manual (Version 2.17.0) [Computer software]. Retrieved from http://mc-stan.org/users/documentation/
  49. Stan Development Team. (2018). rstanarm: Bayesian applied regression modeling via Stan (R Package Version 2.17.3) [Computer software]. Retrieved from http://mc-stan.org/
  50. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381–403). New York, NY: Academic Press.Google Scholar
  51. Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133(6), 1038–1066.  https://doi.org/10.1037/0033-2909.133.6.1038 CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Lea M. Bartsch
    • 1
    • 2
    Email author
  • Henrik Singmann
    • 1
  • Klaus Oberauer
    • 1
  1. 1.University of ZurichZurichSwitzerland
  2. 2.University Research Priority Program “Dynamics of Healthy Aging”ZurichSwitzerland

Personalised recommendations